首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   21篇
  国内免费   1篇
电工技术   2篇
化学工业   54篇
金属工艺   3篇
机械仪表   8篇
建筑科学   21篇
能源动力   10篇
轻工业   18篇
水利工程   3篇
石油天然气   1篇
无线电   18篇
一般工业技术   39篇
冶金工业   18篇
原子能技术   2篇
自动化技术   21篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   10篇
  2020年   11篇
  2019年   19篇
  2018年   18篇
  2017年   9篇
  2016年   16篇
  2015年   12篇
  2014年   14篇
  2013年   16篇
  2012年   13篇
  2011年   12篇
  2010年   8篇
  2009年   8篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1987年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
101.
102.
It was evaluated physical, antibacterial and antibiofilm properties of Zataria multiflora Boiss essential oil (ZEO) and its nanoemulsion. Long‐term stability of nanoemulsion prepared by emulsion phase inversion was satisfying based on low narrow size distribution (polydispersity index ?0.2) and low droplet size (200 nm) over 21 days of storage. Nanoemulsion showed lower minimum inhibitory concentration (MIC) on Listeria monocytogenes (2500 µg mL?1) than Salmonella Typhimurium (5000 µg mL?1). Killing kinetics study revealed that nanoemulsion was more effective in inhibiting the growth of bacteria in milk than culture media. Both bacteriostatic and bactericidal effects were observed depending on the type of bacteria, nanoemulsion concentration and the time of exposure. Nanoemulsion at 4×MIC concentration reduced 64% and 75% of one‐day‐old biofilm of Lmonocytogenes and S. Typhimurium, respectively. In conclusion, nanoemulsion revealed antimicrobial activity, but converting the ZEO to nanoemulsion did not improve its antibacterial activity; however, antibiofilm properties were enhanced.  相似文献   
103.
104.
The structural behavior of hybrid fiber-reinforced polymer (FRP)–autoclaved aerated concrete (AAC) panels has been investigated. FRP laminates can be used to reinforce externally the plain AAC producing a very high stiff panel. The resulting hybrid FRP/AAC panel can be used as structural or non-structural member for the housing construction. In order to accomplish this, FRP/AAC panels have been fabricated and prepared for testing. The specimens have been processed using the advanced semi-mechanical processing technique VARTM (Vacuum Assisted Resin Transfer Molding). The concept of the FRP/AAC panel is based on the theory of sandwich construction with strong and stiff skins, like FRP composites, bonded to a core material, like AAC panel. The FRP composite material was made of carbon reinforcing fabrics embedded in an epoxy resin matrix. The panels were tested under four-point bending test to investigate their strength and ductility responses using a Tinius–Olsen Universal Testing Machine. Experimental results showed a significant influence of FRP laminates on both strength and ductility of the FRP/AAC panels. A theoretical analysis was conducted to predict the strength of the FRP/AAC member and results found were in good accordance with the experimental ones.  相似文献   
105.
Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh‐environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h ‐BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge–discharge efficiency is achieved in the PEI sandwiched with CVD‐grown h ‐BN films at elevated temperatures when compared to neat PEI films and other high‐temperature polymer and nanocomposite dielectrics. Notably, the h ‐BN‐coated PEI films are capable of operating with >90% charge–discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm?3, even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge–discharge cycles are demonstrated in the h ‐BN‐coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high‐temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications.  相似文献   
106.
Portland cement was mixed with radionuclide 134Cs to produce low-level radioactive sources. These sources were surrounded with cement mixed with different materials like microsilica and barite. The leaching rate of 134Cs from the solidified radioactive source in Portland cement alone was found to be 4.481 × 10−4 g/cm2 per day. Mixing this Portland cement with microsilica and with barite reduced significantly the leaching rate to 1.091 × 10−4 g/cm2 per day and 3.153 × 10−4 g/cm2 per day for 1 wt.% mixing, and to 1.401 × 10−5 g/cm2 per day and 1.703 × 10−4 g/cm2 per day for 3 wt.% mixing, respectively. It was also found that the application of a latex paint reduced these leaching rates by about 6.5%, 20.3% and 13.3% for Portland cement, cement mixed with microsilica and with barite, respectively. The leaching data were also analyzed using the polynomial method. The obtained results showed that cement mixed with microsilica and with barite can be effectively used for radioactive sources solidification.  相似文献   
107.
Replacing petroleum‐based materials with biodegradable materials that offer low environmental impact and safety risk is of increasing importance in sustainable materials processing. The objective of this study was to produce uniform nanofibrillated cotton from recycled waste cotton T‐shirts using microgrinding techniques and compare its performance as reinforcing agent in thermoplastic polymers constructs with wood‐originated materials. The effect of the microgrinding process on morphology, crystallinity, and thermal stability of materials was evaluated by transmission electron microscopy (TEM), scanning electron microscope (SEM), X‐ray diffraction (XRD), and thermogravimetry analysis (TGA). Nanofibrillated cotton resulted in higher crystallinity and thermal stability than fibrillated bleached and unbleached softwood. All the materials were extruded with low‐density polyethylene to fabricate nanocomposite films. Nanofibrillated cotton nanocomposites had a higher optical transparency than did the wood‐based composites. The mechanical properties of the nanofibrillated cotton nanocomposites were largely improved and showed 62.5% increase in strength over the wood‐based nanofibrillated containing composites, in agreement with the higher crystallinity of the nanosized cotton‐derived filler material. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41857.  相似文献   
108.
109.
Hydrogels are often employed as temporary platforms for cell proliferation and tissue organization in vitro. Researchers have incorporated photodegradable (PD) moieties into synthetic polymeric hydrogels as a means of achieving spatiotemporal control over material properties. In this study protein‐based PD hydrogels composed of methacrylated gelatin and a crosslinker containing o‐nitrobenzyl ester groups are developed. The hydrogels are able to degrade rapidly and specifically in response to UV light and can be photopatterned to a variety of shapes and dimensions in a one‐step process. Micropatterned PD hydrogels are shown to improve cell distribution, alignment, and beating regularity of cultured neonatal rat cardiomyocytes. Overall this work introduces a new class of PD hydrogel based on natural and biofunctional polymers as cell culture substrates for improving cellular organization and function.  相似文献   
110.
Superparamagnetic Fe3O4 nanoparticles (MNPs) were functionalized by modified cellulose. The modified cellulose was synthesized through bromoacetylation of cellulose (BACell) followed by the substitution of sodium azide to form BACell-N3. The remaining methylene bromide groups on BACell-N3 was further reacted with the MNPs to form Fe3O4/Cell-N3. Then propargyl alcohol (PA) was immobilized on the azide-terminated Fe3O4 nanoparticles through copper (I)-catalyzed azide-alkyne cycloaddition (click reaction) to form Fe3O4/Cell/TAA nanoparticles. Doxorubicin (DOX) was loaded on prepared nanoparticles and release profiles of the DOX as a model drug from the Fe3O4/Cell/TAA nanoparticles and its loading capacity were determined by UV–Vis absorption at λmax 483?nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号