首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1081篇
  免费   53篇
  国内免费   1篇
电工技术   8篇
化学工业   208篇
金属工艺   6篇
机械仪表   12篇
建筑科学   32篇
矿业工程   4篇
能源动力   42篇
轻工业   189篇
水利工程   6篇
无线电   74篇
一般工业技术   161篇
冶金工业   250篇
原子能技术   2篇
自动化技术   141篇
  2023年   3篇
  2022年   23篇
  2021年   34篇
  2020年   18篇
  2019年   25篇
  2018年   21篇
  2017年   35篇
  2016年   21篇
  2015年   17篇
  2014年   35篇
  2013年   54篇
  2012年   45篇
  2011年   58篇
  2010年   56篇
  2009年   53篇
  2008年   46篇
  2007年   46篇
  2006年   41篇
  2005年   25篇
  2004年   35篇
  2003年   30篇
  2002年   21篇
  2001年   19篇
  2000年   14篇
  1999年   30篇
  1998年   93篇
  1997年   56篇
  1996年   31篇
  1995年   26篇
  1994年   29篇
  1993年   21篇
  1992年   7篇
  1991年   11篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1977年   3篇
  1976年   8篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有1135条查询结果,搜索用时 14 毫秒
51.
The purpose of this project was to study the modifications in nutrient composition, amino acid content, and protein quality of white tuna preserves after each of the thermal treatments involved in the canning process. Also the influence that a three years storage period at room temperature has on the nutritional quality of canned tuna was studied. The biological assays used for the study of the protein utilization were carried out on Wistar rats, fed on semi-synthetic diets for 12 days varying only the protein source, casein or tuna provided as follows: raw, cooked in brine, steamed, sterilized tuna, and canned tuna stored for three years. The sterilization process and storage time led to a great increase in the lipid content of the canned tuna and to a porcentual decrease in protein, and moisture content. Amino acid composition of canned and cooked tuna did not show great modifications compared to raw tuna. Neither protein digestibility nor biological value of the cooked, canned, and stored tuna showed any deterioration. The protein quality of white tuna meat preserves has been compared with preserves made up of red and white tuna meat.  相似文献   
52.
Non‐cationic and amphipathic indoloazepinone‐constrained (Aia) oligomers have been synthesized as new vectors for intracellular delivery. The conformational preferences of the [l ‐Aia‐Xxx]n oligomers were investigated by circular dichroism (CD) and NMR spectroscopy. Whereas Boc‐[l ‐Aia‐Gly]2,4‐OBn oligomers 12 and 13 and Boc‐[l ‐Aia‐β3h‐l ‐Ala]2,4‐OBn oligomers 16 and 17 were totally or partially disordered, Boc‐[l ‐Aia‐l ‐Ala]2‐OBn ( 14 ) induced a typical turn stabilized by C5‐ and C7‐membered H‐bond pseudo‐cycles and aromatic interactions. Boc‐[l ‐Aia‐l ‐Ala]4‐OBn ( 15 ) exhibited a unique structure with remarkable T‐shaped π‐stacking interactions involving the indole rings of the four l ‐Aia residues forming a dense hydrophobic cluster. All of the proposed FITC‐6‐Ahx‐[l ‐Aia‐Xxx]4‐NH2 oligomers 19 – 23 , with the exception of FITC‐6‐Ahx‐[l ‐Aia‐Gly]4‐NH2 ( 18 ), were internalized by MDA‐MB‐231 cells with higher efficiency than the positive references penetratin and Arg8. In parallel, the compounds of this series were successfully explored in an in vitro blood–brain barrier (BBB) permeation assay. Although no passive diffusion permeability was observed for any of the tested Ac‐[l ‐Aia‐Xxx]4‐NH2 oligomers in the PAMPA model, Ac‐[l ‐Aia‐l ‐Arg]4‐NH2 ( 26 ) showed significant permeation in the in vitro cell‐based human model of the BBB, suggesting an active mechanism of cell penetration.  相似文献   
53.
We studied ancient enamels on gilded copper from a collection of archeological horse harness pendants of the Museo Instituto Valencia de Don Juan (Madrid, Spain) to test the benefits of a new, nondestructive analytical methodology based on chemometric analysis (i.e., Principal Component Analysis, PCA) on micro‐ATR‐FTIR spectral data and chemical quantification using SEM‐EDS. The novelty of this approach was threefold: (i) PCA allowed the discrimination of the different harness pendants of known origin and attributed to the 14th and 15th centuries according to the chemical complex composition, nanostructure, glass weathering, and/or coloring mechanisms of each colored enamel, separately (i.e., red, purple, blue, and white), (ii) it is a cheap, easily available and nondestructive methodology that enables us to (iii) draw archeological conclusions about the quality of the manufacturing process, reassess the chronology of these objects and attempt to attribute them to different workshops according to the different traditional recipes identified. In particular, the enamels were made of alkali and/or alkaline earth lead‐glass with a wide range of chemical compounds in the form of pigments or opacifiers. Two types of coloring mechanisms were identified, colloidal particles such as copper‐ruby for red enamels, and ionic mechanisms such as Fe(II) and Co(II) to achieve a blue pigments; Mn(III) in the purple pigment; and two kind of white enamels were identified, i.e., tin oxide as an opacifier and uranium oxide. In addition, we established the reason for the poor state of conservation of some of the enamels by means of the identification of depolymerization and ion exchanges, well‐known harmful effects of glass weathering, and finally a chronology was assigned for some of these pieces according to the enamel composition.  相似文献   
54.
Morphological characteristics and mechanical properties of PP‐EP/EVA blends were studied and compared to those of PP/EVA previously reported. For the PPEP/EVA blends, interfacial interactions in amorphous zones, which were associated with shifts in Tg, were well defined compared to those of PP/EVA blends, although the nature of crystalline zones was similar for both systems. At EVA concentrations up to 20%, the elongation at break and impact strength slightly increased in both systems. However, PP‐EP/EVA displayed higher values of these properties compared with PP/EVA. At high EVA concentrations (above 20%), the indicated properties were enhanced in both polymeric systems, and the same proportional behavior was maintained. The decrease in tensile strength of PP‐EP/EVA was not as marked as in PP/EVA with the addition of EVA, and it remained below PP/EVA at high EVA concentrations. The improvement in properties of PP‐EP/EVA was attributed to favorable interactions between the ethylene groups contained in both copolymers. These interactions rendered a high degree of compatibility between the PP‐EP and EVA components.  相似文献   
55.
The endocannabinoid system is a component of the neuroprotective mechanisms that an organism displays after traumatic brain injury (TBI). A diurnal variation in several components of this system has been reported. This variation may influence the recovery and survival rate after TBI. We have previously reported that the recovery and survival rate of rats is higher if TBI occurs at 1:00 than at 13:00. This could be explained by a diurnal variation of the endocannabinoid system. Here, we describe the effects of anandamide administration in rats prior to the induction of TBI at two different times of the day: 1:00 and 13:00. We found that anandamide reduced the neurological damage at both times. Nevertheless, its effects on bleeding, survival, food intake, and body weight were dependent on the time of TBI. In addition, we analyzed the diurnal variation of the expression of the cannabinoid receptors CB1R and CB2R in the cerebral cortex of both control rats and rats subjected to TBI. We found that CB1R protein was expressed more during the day, whereas its mRNA level was higher during the night. We did not find a diurnal variation for the CB2R. In addition, we also found that TBI increased CB1R and CB2R in the contralateral hemisphere and disrupted the CB1R diurnal cycle.  相似文献   
56.
This study examines in detail the influence of low‐temperature plasma and biopolymer chitosan treatments on wool dyeability. Wool knitted fabrics were treated and characterized by whiteness and shrink‐resistance measurements. Surface modification was assessed by contact‐angle measurements of human hair fibers, which were used as a model to study the wetting properties of the treated wool knitted fabrics. The dyeing behavior was assessed from the diffusion mechanism point of view. The dyeing kinetics were measured at two different pHs (4.2 and 6.5) and three different temperatures (60, 85, and 100°C) to gain information about the contribution of the surface modification treatment to the dyeing mechanism. The exhaustion and reflectance data were compared, and the apparent diffusion coefficients were calculated. On the basis of the obtained results, a model for the dyeing mechanism of the chitosan treated wool was proposed. When treated with chitosan, the polymer sheath spread on the surface of the fibers acted as a predominant dyeing site in very short dyeing times, thus interacting with the dye and in later stages imparting the dye to the wool fiber. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2204–2214, 2005  相似文献   
57.
To obtain a novel, active and selective to diesel catalytic material for syngas processing via Fischer–Tropsch synthesis (FTS), a series of 20 wt.% cobalt catalysts has been prepared by impregnation of a mesoporous molecular sieve based on silica (SBA-15, Al-MCM-41, INT-MM1), and a commercial amorphous silica for comparison purposes. All materials were characterized by several physico-chemical techniques: AAS, BET surface area, XRD, TPR, and H2 chemisorption with pulse reoxidation and finally their reactivity on the FTS reaction was evaluated at 523 K, 10 bar, and H2/CO = 2. Catalytic and characterization results show a great influence of mesoporous support porosity on the structure, reducibility, and FTS catalytic behavior of cobalt oxide species supported over these ordered materials. It was found that the size of supported cobalt oxide species formed during the calcination step increased with the average pore size (Dp) of the mesoporous support. Thus, the catalyst with larger Co oxide species located in wide pore silica showed to be easily reducible, more active and very selective toward the diesel fraction. It seems to be the case of the Co/SBA-15 solid, which showed to be the most active solid (XCO 63%) when the same mass of catalyst was used. Under CO iso-conversion conditions (XCO 40%), Co/SBA-15 was more selective toward the formation of C5+ hydrocarbons (80%, α = 0.76) and less selective to CH4 (15%). On the contrary, when Al-MCM-41 and INT-MM1 were used as supports, a lower selectivity to C5+ and CO conversion and higher CH4 selectivity (20%) were observed due to the decrease of Dp, of the cobalt oxide species size and the reducibility degree of such species.  相似文献   
58.
Methamphetamine is, worldwide, one of the most consumed drugs of abuse. One important side effect is neurodegeneration leading to a decrease in life expectancy. The aim of this paper was to check whether the drug affects one of the receptors involved in neurodegeneration/neuroprotection events, namely the adenosine A2A receptor (A2AR). First, we noticed that methamphetamine does not affect A2A functionality if the receptor is expressed in a heterologous system. However, A2AR becomes sensitive to the drug upon complexes formation with the cannabinoid CB1 receptor (CB1R) and the sigma 1 receptor (σ1R). Signaling via both adenosine A2AR and cannabinoid CB1R was affected by methamphetamine in cells co-expressing the two receptors. In striatal primary cultures, the A2AR–CB1R heteromer complex was detected and methamphetamine not only altered its expression but completely blocked the A2AR- and the CB1R-mediated activation of the mitogen activated protein kinase (MAPK) pathway. In conclusion, methamphetamine, with the participation of σ1R, alters the expression and function of two interacting receptors, A2AR, which is a therapeutic target for neuroprotection, and CB1R, which is the most abundant G protein-coupled receptor (GPCR) in the brain.  相似文献   
59.
60.
The repair of bone fractures is a clinical challenge for patients with impaired healing, such as osteoporosis. Currently, different strategies have been developed to design new biomaterials, enhancing their interactions with biological systems and conducting the cellular behavior in the desired direction to help fracture healing. In the present work, hydroxyapatite-graphene oxide (HA-GO) nanocomposites were produced and the morphological and physicochemical influences of the addition of 0.5 wt%, 1.0 wt% and 1.5 wt% of GO to HA were observed. FEG-SEM and TEM analyses of HA-GO nanocomposites showed HA nanoparticles adhered to the surface of the GO sheets, suggesting an effective method to form nanostructured graphene-based biomaterials. As confirmation, physicochemical analyses by Raman, FTIR and TGA demonstrated a strong affinity between HA and GO, according to the increase of concentration from 0.5 wt% to 1.5 wt% GO in the HA-GO nanocomposites. Also, in order to evaluate the HA-GO nanocomposites behavior under biological microenvironment, in vitro bioactivity and indirect cytotoxicity tests were performed. FEG-SEM analyses confirmed the positive results for the bioactivity properties of HA-GO nanocomposite and indirect cytotoxicity demonstrated that even with a decrease in the hDPSCs viability and proliferation, when increasing to 1.5 wt% of GO concentration, high level of cell viability was exhibited by HA-GO nanocomposites. These biological results suggested the 0.5 wt% HA-GO nanocomposite as a potential bioactive bone graft and a promising biomaterial for bone tissue regeneration, when compared to the pure HA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号