首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   18篇
  国内免费   1篇
电工技术   3篇
综合类   1篇
化学工业   91篇
金属工艺   5篇
机械仪表   56篇
建筑科学   7篇
矿业工程   1篇
能源动力   18篇
轻工业   55篇
水利工程   7篇
石油天然气   1篇
无线电   22篇
一般工业技术   64篇
冶金工业   27篇
原子能技术   5篇
自动化技术   44篇
  2023年   9篇
  2022年   33篇
  2021年   27篇
  2020年   23篇
  2019年   41篇
  2018年   29篇
  2017年   18篇
  2016年   13篇
  2015年   5篇
  2014年   12篇
  2013年   29篇
  2012年   27篇
  2011年   26篇
  2010年   12篇
  2009年   22篇
  2008年   16篇
  2007年   13篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1981年   3篇
  1978年   1篇
  1972年   1篇
排序方式: 共有407条查询结果,搜索用时 31 毫秒
61.
Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.  相似文献   
62.
Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient’s myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.  相似文献   
63.
Even in a natural ecosystem, plants are continuously threatened by various microbial diseases. To save themselves from these diverse infections, plants build a robust, multilayered immune system through their natural chemical compounds. Among the several crucial bioactive compounds possessed by plants’ immune systems, antimicrobial peptides (AMPs) rank in the first tier. These AMPs are environmentally friendly, anti-pathogenic, and do not bring harm to humans. Antimicrobial peptides can be isolated in several ways, but recombinant protein production has become increasingly popular in recent years, with the Escherichia coli expression system being the most widely used. However, the efficacy of this expression system is compromised due to the difficulty of removing endotoxin from its system. Therefore, this review suggests a high-throughput cDNA library-based plant-derived AMP isolation technique using the Bacillus subtilis expression system. This method can be performed for large-scale screening of plant sources to classify unique or homologous AMPs for the agronomic and applied field of plant studies. Furthermore, this review also focuses on the efficacy of plant AMPs, which are dependent on their numerous modes of action and exceptional structural stability to function against a wide range of invaders. To conclude, the findings from this study will be useful in investigating how novel AMPs are distributed among plants and provide detailed guidelines for an effective screening strategy of AMPs.  相似文献   
64.
Elemental analyses of kohl (stone) samples collected from three different parts of the world were performed using laser-induced breakdown spectroscopy (LIBS). The analyses indicated that lead (Pb), copper (Cu), silver (Ag), iron (Fe), calcium (Ca), aluminum (Al), silicon (Si), and sodium (Na) were present in all the kohl samples. In addition to these elements, the sample from Madina, Kingdom of Saudi Arabia (KSA), contained the elements tin (Sn), zirconium (Zr), and antimony (Sb). The sample from Mount Toor, Egypt, also contained Sn. Also, quantitative analysis for lead was carried out by the standard addition method using the LIBS technique. The result showed the presence of 14.12 ± 0.28% by weight of Pb in the sample from Madina, which compares well with the measurement done using atomic absorption spectroscopy (AAS) (13.31 ± 0.46%). The standard addition method used three calibration curves drawn for three emission lines of the LIBS spectra of Pb. The limits of detection (LoD) for these calibration curves varied from 0.27% to 1.16% by weight. The lead contents of the samples from Mount Toor and the local market of Bangladesh were also measured by the AAS technique, and the results were 14.61 ± 0.48% and 8.98 ± 0.35% by weight, respectively. The reason for determining only the lead content in kohl, which may be used as an eye cosmetic, is the adverse effect that lead has on health.  相似文献   
65.
Concentrating solar thermal systems offer a promising method for large scale solar energy collection. Although concentrating collectors are generally thought of as large-scale stand-alone systems, there is a huge opportunity to use novel concentrating solar thermal systems for rooftop applications such as domestic hot water, industrial process heat and solar air conditioning for commercial, industrial and institutional buildings. This paper describes the thermal performance of a new low-cost solar thermal micro-concentrating collector (MCT), which uses linear Fresnel reflectors, and is designed to operate at temperatures up to 220 °C. The modules of this collector system are approximately 3 m long by 1 m wide and 0.3 m high. The objective of the study is to optimise the design to maximise the overall thermal efficiency. The absorber is contained in a sealed enclosure to minimise convective losses. The main heat losses are due to natural convection inside the enclosure and radiation heat transfer from the absorber tube. In this paper we present the results of a computational and experimental investigation of radiation and convection heat transfer in order to understand the heat loss mechanisms. A computational model for the prototype collector has been developed using ANSYS–CFX, a commercial computational fluid dynamics software package. The numerical results are compared to experimental measurements of the heat loss from the absorber, and flow visualisation within the cavity. This paper also presents new correlations for the Nusselt number as a function of Rayleigh number.  相似文献   
66.
The structure, critical exponents and magnetocaloric effect (MCE) of Nebulized Spray Pyrolysis (NSP) synthesized nano crystalline La0.67Ca0.33Mn1−xFexO3 (x = 0.05, 0.2) were investigated. The Reitveld refinement of XRD patterns show that the samples adopt an orthorhombic structure with Pnma space group. TEM inspection reveals that the average particle size is about 15 nm and 42 nm for NSP synthesized LCMFe0.05 and LCMFe0.2 samples respectively. The temperature and field dependent magnetization studies reveal the superparamagnetic state of La0.67Ca0.33Mn0.95Fe0.05O3 and spin-glass-like state of La0.67Ca0.33Mn0.8Fe0.2O3. The critical behaviour at the transition region studied using modified Arrott plot provides a second order nature of phase transition for both samples. The magnetocaloric studies show the maximum value of magnetic entropy change (ΔSmax) is in the range 2.3 J kg−1 K−1 at 158 K for LCMFe0.05 and 0.3 J kg−1 K at 92 K for LCMFe0.2 respectively at 5 T field. The field dependence of the magnetic entropy changes are also analysed, which show a power law dependence (ΔSMHn, n = 0.72 (2)) at transition temperature, TC = 162 K for LCMFe0.05 and n = 1.11(3) at 92 K for LCMFe0.2.  相似文献   
67.
The abundance of singly ionized oxygen, O II, in planetary nebulae provides crucial diagnostic tests for the physical conditions present in these astrophysical environments. The abundance can be determined from the absorption lines formed by the radiative processes, such as the photo-excitations reported here. Radiative transitions are obtained from a total of 708 fine structure levels of O II with , and 1/2?J?17/2. For spectral analysis oscillator strengths, line strengths, and transition probabilities (A) are presented for 51,733 electric dipole fine structure radiative transitions. The calculations were carried out in the relativistic Breit-Pauli R-matrix approximation. The transitions have been identified spectroscopically using quantum defect analysis and other criteria. The calculated energies agree with the observed energies within 5% for most of the levels. However, some relatively large differences are noted, the largest difference being 13% for the level 2s22p2(1D)4p(2Fo)7/2. Most of the A values and lifetimes agree with the existing measured and calculated values. The transitions should be applicable for diagnostics as well as spectral modeling in the ultraviolet and optical regions of astrophysical and laboratory plasmas.  相似文献   
68.
It is necessary to study the suitable effect of plasma parameters, such as exposure time and applied voltage on the wicking properties of silk fabrics. Wicking property of silk fabric has been improved by using air dielectric barrier discharge plasma treatment. The plasma treatment has been utilized to modify the surface properties of silk fabrics. Untreated and plasma-treated fabrics have been characterized by contact angle Goniometer, wicking test, Wet-out time, scanning electron microscope, Attenuated Total Reflection Fourier Transforms Infrared spectrometer (ATR-FTIR) and dye uptake test. The ATR-FTIR characterization shows that the hydroxyl functional group has been increased after plasma treatment of silk fabric. The experimental results of wicking rate and Wet-out time of the plasma-treated silk fabrics have shown significant improvement in hydrophilic properties that could be confirmed by contact angle measurement which is close to 0°. The tensile strength of untreated and plasma-treated fabrics has been measured to confirm the enhanced surface property.  相似文献   
69.
This article reviews several mathematical formulations including the corresponding boundary conditions for numerical predictions of solidification and melting. Emphasis is on techniques that are used in solving solid–liquid interface phenomena. The fixed grid enthalpy method is reviewed based on the solution techniques of conduction and convection related phase change problems. Variable grid methods are categorized and then analyzed based on their accuracy, computational efforts and convergence characteristics. The article concludes with some guidance for selecting the accurate solution techniques for solving solidification and melting problems.  相似文献   
70.
Optimum band gap values, favourable band edge positions and stability in the electrolyte are critical parameters required for a semiconductor to have efficient photoelectrode properties. The present investigation carried out on the phase pure α & β MoO3 thin film shows that the low bandgap β-MoO3 possesses a mis-alignment with the water oxidation potential, while a more suitable band alignment is observed for the comparatively large bandgap α-MoO3. Both experimental and DFT calculations show that the valence edge of the orthorhombic (α-MoO3) phase is located at a higher energy (0.9 eV higher in VB-XPS and 1 eV higher in the DOS plots) than the monoclinic (β-MoO3) phase, while the conduction edge value is roughly at the same energy level (?2.5 eV) in both polymorphs. Based on the above investigations, an all oxide heterojunction comprising of β-MoO3/α-MoO3 is found to be suitable for improved PEC performance due to favourable energy band diagram and increased visible light absorption in β-MoO3. Significantly higher cathodic photocurrent is observed for the β-MoO3/α-MoO3 (1.6 mA/cm2 at applied bias of ?0.3VRHE under simulated 1 sun irradiation) as compared to the very low anodic response in β-MoO3 (~1.0 nA/cm2) and α-MoO3 (32 μA/cm2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号