Social media usage among organizations is growing tremendously. Organizations are now building and maintaining social media public pages to improve their social network salience, enhance interest in their organizations, and build relationships with the online public. The majority of the studies on social media usage are based on the individual perspective while some are from the organizational perspective. However, not many studies have investigated the actual impact of social media usage on organizational performance. Therefore, using the qualitative approach, this study investigates the various purposes of social media usage and its impact on organizational performance. This study however, focuses only on the social media managers’ views. The senior managers of six organizations that are using social media are interviewed from which we find that social media is used for various purposes in organizations, such as advertising and promotion, branding, information search, building customer relations and many more. The results also show that social media has a greater impact on the performance of organizations in terms of enhancement in customer relations and customer service activities, improvement in information accessibility and cost reduction in terms of marketing and customer service. 相似文献
Nanosecond melting and quenching of materials offers a pathway to novel structures with unusual properties. Impurity‐rich silicon processed using nanosecond‐pulsed‐laser‐melting is known to produce nanoscale features in a process referred to as “cellular breakdown” due to destabilization of the planar liquid/solid interface. Here, atom probe tomography combined with electron microscopy is applied to show that the morphology of cellular breakdown in these materials is significantly more complex than previously documented. Breakdown into a complex, branching filamentary structure topped by a few nm of a cell‐like layer is observed. Single‐phase diamond cubic silicon highly supersaturated with at least 10% atomic Co and no detectable silicides is reported within these filaments. In addition, the unprecedented spatio‐chemical accuracy of the atom probe allows to investigate nanosecond formation dynamics of this complex material. Previously reported properties of these materials can now be reconsidered in light of their true composition, and this class of inhomogeneous metastable alloys in silicon can be explored with confidence. 相似文献
Organic–inorganic hybrid materials are of significant interest owing to their diverse applications ranging from photovoltaics and electronics to catalysis. Control over the organic and inorganic components offers flexibility through tuning their chemical and physical properties. Herein, it is reported that a new organic–inorganic hybrid, [Mn(C2H6OS)6]I4, with linear tetraiodide anions exhibit an ultralow thermal conductivity of 0.15 ± 0.01 W m?1 K?1 at room temperature, which is among the lowest values reported for organic–inorganic hybrid materials. Interestingly, the hybrid compound has a unique 0D structure, which extends into 3D supramolecular frameworks through nonclassical hydrogen bonding. Phonon band structure calculations reveal that low group velocities and localization of vibrational energy underlie the observed ultralow thermal conductivity, which could serve as a general principle to design novel thermal management materials. 相似文献
Time resolved photoluminescence and electroluminescence measurements are used to study changes in the emission characteristics of materials typically used in phosphorescent organic light emitting devices (PhOLEDs). Studies on archetypical PhOLEDs with phosphorescent material, fac‐tris(2‐phenylpyridine) iridium (Ir(ppy)3), show that the lifetime of triplet exciton is modified when in close proximity to a metal layer. Interactions with a metal layer ~30–100 nm away, as is typically the case in PhOLEDs, result in an increase in the spontaneous emission decay rate of triplet excitons, and causes the exciton lifetime to become shorter as the distance between the phosphorescent material and the metal becomes smaller. The phenomenon, possibly the result of the confined radiation field by the metal, affects device efficiency and efficiency roll‐off behavior. The results shed the light on phenomena affecting the efficiency behavior of PhOLEDs, and provide new insights for device design that can help enhance efficiency performance. 相似文献
Wireless body area network (WBAN) has witnessed significant attentions in the healthcare domain using biomedical sensor-based monitoring of heterogeneous nature of vital signs of a patient’s body. The design of frequency band, MAC superframe structure, and slots allocation to the heterogeneous nature of the patient’s packets have become the challenging problems in WBAN due to the diverse QoS requirements. In this context, this paper proposes an Energy Efficient Traffic Prioritization for Medium Access Control (EETP-MAC) protocol, which provides sufficient slots with higher bandwidth and guard bands to avoid channels interference causing longer delay. Specifically, the design of EETP-MAC is broadly divided in to four folds. Firstly, patient data traffic prioritization is presented with broad categorization including Non-Constrained Data (NCD), Delay-Constrained Data (DCD), Reliability-Constrained Data (RCD) and Critical Data (CD). Secondly, a modified superframe structure design is proposed for effectively handling the traffic prioritization. Thirdly, threshold based slot allocation technique is developed to reduce contention by effectively quantifying criticality on patient data. Forth, an energy efficient frame design is presented focusing on beacon interval, superframe duration, and packet size and inactive period. Simulations are performed to comparatively evaluate the performance of the proposed EETP-MAC with the state-of-the-art MAC protocols. The comparative evaluation attests the benefit of EETP-MAC in terms of efficient slot allocation resulting in lower delay and energy consumption.
Wireless Personal Communications - Current research in wireless communication undoubtedly points towards the tremendous advantages of using visible light as a spectrum for significantly boosting... 相似文献
Base station's location privacy in a wireless sensor network (WSN) is critical for information security and operational availability of the network. A key part of securing the base station from potential compromise is to secure the information about its physical location. This paper proposes a technique called base station location privacy via software-defined networking (SDN) in wireless sensor networks (BSLPSDN). The inspiration comes from the architecture of SDN, where the control plane is separated from the data plane, and where control plane decides the policy for the data plane. BSLPSDN uses three categories of nodes, namely, a main controller to instruct the overall operations, a dedicated node to buffer and forward data, and lastly, a common node to sense and forward the packet. We employ three kinds of nodes to collaborate and achieve stealth for the base station and thus protecting it against the traffic-analysis attacks. Different traits of the WSN including energy status and traffic density can actively be monitored by BSLPSDN, which positively affects the energy goals, expected life of the network, load on common nodes, and the possibility of creating diversion in the wake of an attack on the base station. We incorporated multiple experiments to analyze and evaluate the performance of our proposed algorithm. We use single controller with multiple sensor nodes and multiple controllers with multiple sensor nodes to show the level of anonymity of BS. Experiments show that providing BS anonymity via multiple controllers is the best method both in terms of energy and privacy. 相似文献
In classical public‐key infrastructure (PKI), the certificate authorities (CAs) are fully trusted, and the security of the PKI relies on the trustworthiness of the CAs. However, recent failures and compromises of CAs showed that if a CA is corrupted, fake certificates may be issued, and the security of clients will be at risk. As emerging solutions, blockchain‐ and log‐based PKI proposals potentially solved the shortcomings of the PKI, in particular, eliminating the weakest link security and providing a rapid remedy to CAs' problems. Nevertheless, log‐based PKIs are still exposed to split‐world attacks if the attacker is capable of presenting two distinct signed versions of the log to the targeted victim(s), while the blockchain‐based PKIs have scaling and high‐cost issues to be overcome. To address these problems, this paper presents a secure and accountable transport layer security (TLS) certificate management (SCM), which is a next‐generation PKI framework. It combines the two emerging architectures, introducing novel mechanisms, and makes CAs and log servers accountable to domain owners. In SCM, CA‐signed domain certificates are stored in log servers, while the management of CAs and log servers is handed over to a group of domain owners, which is conducted on the blockchain platform. Different from existing blockchain‐based PKI proposals, SCM decreases the storage cost of blockchain from several hundreds of GB to only hundreds of megabytes. Finally, we analyze the security and performance of SCM and compare SCM with previous blockchain‐ and log‐based PKI schemes. 相似文献
This paper presents an integrated security architecture for heterogeneous distributed systems. Based on the MPEG-21 standard data structures and the MPEG-M standard services, the proposed architecture provides a unified, fine-grained solution for protecting each information unit circulated in the system. In this context, a novel scheme for translating the access control rules, initially expressed by means of the standard MPEG-21 Rights Expression Language, into Ciphertext-Policy Attribute-Based Encryption access trees is introduced, thereby enabling offline authorization based on the users’ attributes, also encapsulated and certified using MPEG-21 licenses. The proposed framework provides a detailed approach in all the steps of the information protection process, from attribute acquisition to data encryption and decryption. 相似文献