首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45171篇
  免费   15392篇
  国内免费   348篇
电工技术   1273篇
综合类   498篇
化学工业   18399篇
金属工艺   735篇
机械仪表   1220篇
建筑科学   2198篇
矿业工程   188篇
能源动力   1148篇
轻工业   7790篇
水利工程   422篇
石油天然气   408篇
武器工业   64篇
无线电   7800篇
一般工业技术   12438篇
冶金工业   880篇
原子能技术   118篇
自动化技术   5332篇
  2024年   24篇
  2023年   123篇
  2022年   259篇
  2021年   544篇
  2020年   1672篇
  2019年   3370篇
  2018年   3307篇
  2017年   3633篇
  2016年   4126篇
  2015年   4205篇
  2014年   4280篇
  2013年   5441篇
  2012年   3246篇
  2011年   2984篇
  2010年   3192篇
  2009年   2994篇
  2008年   2540篇
  2007年   2334篇
  2006年   2025篇
  2005年   1766篇
  2004年   1599篇
  2003年   1561篇
  2002年   1531篇
  2001年   1355篇
  2000年   1251篇
  1999年   612篇
  1998年   173篇
  1997年   144篇
  1996年   87篇
  1995年   99篇
  1994年   86篇
  1993年   63篇
  1992年   54篇
  1991年   36篇
  1990年   35篇
  1989年   30篇
  1988年   15篇
  1987年   13篇
  1986年   11篇
  1985年   8篇
  1984年   15篇
  1983年   11篇
  1982年   7篇
  1981年   14篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1976年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Optical fluorescence imaging is an important strategy to explore the mechanism of virus–host interaction. However, current fluorescent tag labeling strategies often dampen viral infectivity. The present study explores an in situ fluorescent labeling strategy in order to preserve viral infectivity and precisely monitor viral infection in vivo. In contrast to pre‐labeling strategy, mice are first intranasally infected with azide‐modified H5N1 pseudotype virus (N3‐H5N1p), followed by injection of dibenzocyclooctyl (DBCO)‐functionalized fluorescence 6 h later. The results show that DBCO dye directly conjugated to N3‐H5N1p in lung tissues through in vivo bioorthogonal chemistry with high specificity and efficacy. More remarkably, in situ labeling rather than conventional prelabeling strategy effectively preserves viral infectivity and immunogenicity both in vitro and in vivo. Hence, in situ bioorthogonal viral labeling is a promising and reliable strategy for imaging and tracking viral infection in vivo.  相似文献   
992.
993.
The combination of complementary techniques to characterize materials at the nanoscale is crucial to gain a more complete picture of their structure, a key step to design and fabricate new materials with improved properties and diverse functions. Here it is shown that correlative atomic force microscopy (AFM) and localization‐based super‐resolution microscopy is a useful tool that provides insight into the structure and emissive properties of fluorescent β‐lactoglobulin (βLG) amyloid‐like fibrils. These hybrid materials are made by functionalization of βLG with organic fluorophores and quantum dots, the latter being relevant for the production of 1D inorganic nanostructures templated by self‐assembling peptides. Simultaneous functionalization of βLG fibers by QD655 and QD525 allows for correlative AFM and two‐color super‐resolution fluorescence imaging of these hybrid materials. These experiments allow the combination of information about the topography and number of filaments that compose a fibril, as well as the emissive properties and nanoscale spatial distribution of the attached fluorophores. This study represents an important step forward in the characterization of multifunctionalized hybrid materials, a key challenge in nanoscience.  相似文献   
994.
The triggering effect of silver nanoparticles (NPs) on the induction of allergic reactions is evaluated, by studying the activation of mast cells and the clinical features of atopic dermatitis in a mouse model. Granule release is induced in RBL‐2H3 mast cells by 5 nm, but not 100 nm silver NPs. Increases in the levels of reactive oxygen species (hydrogen peroxide and mitochondrial superoxide) and intracellular Ca++ in mast cells are induced by 5 nm silver NPs. In a mouse model of atopic dermatitis induced by a mite allergen, the skin lesions are more severe and appear earlier in mice treated simultaneously with 5 nm silver NPs and allergen compared with mice treated with allergen alone or 100 nm silver NPs and allergen. The histological findings reveal that number of tryptase‐positive mast cells and total IgE levels in the serum increase in mice treated with 5 nm silver NPs and allergen. The results in this study indicate that cotreatment with 5 nm silver NPs stimulates mast cell degranulation and induces earlier and more severe clinical alterations in allergy‐prone individuals.  相似文献   
995.
Responsive nanomaterials have emerged as promising candidates as drug delivery vehicles in order to address biomedical diseases such as cancer. In this work, polymer‐based responsive nanoparticles prepared by a supramolecular approach are loaded with doxorubicin (DOX) for the cancer therapy. The nanoparticles contain disulfide bonds within the polymer network, allowing the release of the DOX payload in a reducing environment within the endoplasm of cancer cells. In addition, the loaded drug can also be released under acidic environment. In vitro anticancer studies using redox and pH dual responsive nanoparticles show excellent performance in inducing cell death and apoptosis. Zebrafish larvae treated with DOX‐loaded nanoparticles exhibit an improved viability as compared with the cases treated with free DOX by the end of a 3 d treatment. Confocal imaging is utilized to provide the daily assessment of tumor size on zebrafish larva models treated with DOX‐loaded nanoparticles, presenting sustainable reduction of tumor. This work demonstrates the development of functional nanoparticles with dual responsive properties for both in vitro and in vivo drug delivery in the cancer therapy.  相似文献   
996.
997.
998.
Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub‐micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd‐doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin–lattice and spin–spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2, and also create dipoles that are beneficial for charge separation and decreased electron–hole recombination in the doped lattice. The Gd‐doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via ?OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd‐doping up to 10%. Cellular internalization and biocompatibility of TiO2@x Gd NBs are tested in vitro on MG‐63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.  相似文献   
999.
Uniquely structured CoSe2–carbon nanotube (CNT) composite microspheres with optimized morphology for the hydrogen‐evolution reaction (HER) are prepared by spray pyrolysis and subsequent selenization. The ultrafine CoSe2 nanocrystals uniformly decorate the entire macroporous CNT backbone in CoSe2–CNT composite microspheres. The macroporous CNT backbone strongly improves the electrocatalytic activity of CoSe2 by improving the electrical conductivity and minimizing the growth of CoSe2 nanocrystals during the synthesis process. In addition, the macroporous structure resulting from the CNT backbone improves the electrocatalytic activity of the CoSe2–CNT microspheres by increasing the removal rate of generated H2 and minimizing the polarization of the electrode during HER. The CoSe2–CNT composite microspheres demonstrate excellent catalytic activity for HER in an acidic medium (10 mA cm?2 at an overpotential of ≈174 mV). The bare CoSe2 powders exhibit moderate HER activity, with an overpotential of 226 mV at 10 mA cm?2. The Tafel slopes for the CoSe2–CNT composite and bare CoSe2 powders are 37.8 and 58.9 mV dec?1, respectively. The CoSe2–CNT composite microspheres have a slightly larger Tafel slope than that of commercial carbon‐supported platinum nanoparticles, which is 30.2 mV dec–1.  相似文献   
1000.
Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon‐enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion‐interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high‐throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号