首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1549篇
  免费   88篇
  国内免费   7篇
电工技术   26篇
综合类   2篇
化学工业   338篇
金属工艺   35篇
机械仪表   40篇
建筑科学   36篇
矿业工程   2篇
能源动力   103篇
轻工业   147篇
水利工程   11篇
石油天然气   39篇
无线电   191篇
一般工业技术   324篇
冶金工业   77篇
原子能技术   10篇
自动化技术   263篇
  2024年   4篇
  2023年   44篇
  2022年   71篇
  2021年   98篇
  2020年   68篇
  2019年   55篇
  2018年   83篇
  2017年   77篇
  2016年   76篇
  2015年   43篇
  2014年   61篇
  2013年   128篇
  2012年   96篇
  2011年   107篇
  2010年   62篇
  2009年   77篇
  2008年   60篇
  2007年   73篇
  2006年   51篇
  2005年   36篇
  2004年   30篇
  2003年   28篇
  2002年   14篇
  2001年   7篇
  2000年   13篇
  1999年   12篇
  1998年   9篇
  1997年   16篇
  1996年   11篇
  1995年   16篇
  1994年   10篇
  1993年   14篇
  1992年   9篇
  1991年   11篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   8篇
  1980年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有1644条查询结果,搜索用时 0 毫秒
81.
A variety of metal‐organic frameworks (MOFs) with varying linkers, topologies, pore sizes, and metal atoms were screened for xenon/krypton separation using grand canonical Monte Carlo (GCMC) simulations. The results indicate that small pores with strong adsorption sites are desired to preferentially adsorb xenon over krypton in multicomponent adsorption. However, if the pore size is too small, it can significantly limit overall gas uptake, which is undesirable. Based on our simulations, MOF‐505 was identified as a promising material due to its increased xenon selectivity over a wider pressure range compared with other MOFs investigated. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   
82.
Cellular polypropylene‐calcium carbonate based piezoelectric films were obtained using biaxial stretching and gas‐mediated inflation followed by a corona discharge treatment using home‐made devices. The obtained results revealed a cellular structure that develops at the interface between the solid particles and the polymer matrix and the final piezoelectric coefficient was found to depend both on the gas pressure profile and on time. The inflation step gives better results when the gas pressure is increased in stepwise manner allowing the gas to adequately intrude the cavities and maintain the required pressure. The overall results are discussed in terms of processing conditions and in terms of the developed microstructure. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   
83.
A novel, polymer‐based foliated graphite/nickel nanocomposites with high thermal conductivity, mechanical properties, and low dielectric constant was developed. The network structure of polyvinyl chloride (PVC) reinforced foliate graphite and nickel nanoparticles (GN) were tested in terms of X‐ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive x‐ray analysis (EDX), and thermal‐gravimetric analyses (TGA). Thermogravimetric analysis revealed a large improvement in the thermal stability of PVC/GN nanocomposites. Thermal conductivity and diffusivity of the composites increased with increasing GN content and temperature. The obtained experimental thermal conductivity result are compared with the existing theoretical models. The measured values of thermal conductivity were in excellent agreement with those calculated from the Agari model. In addition, specific heat, coefficient of thermal expansion (TEC), micro porosity, and crosslinking density (CLD) of composites were investigated. The mechanical properties such as tensile strength, tensile modulus, hardness, and elongation at break of the nanocomposites were improved with inclusion GN which is proportional to GN content. Finally, the dielectric properties of PVC/GN nanocomposites as a function of frequency have been investigated in details. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
84.
A low temperature co-fired ceramic (LTCC) material system has been used to develop a protype field emission cathode structure for use in an experimental magnetron oscillator. The structure is designed for used with 30 gated field emission array (GFEA) die electrically connected through silver metal traces and electrical vias. To approximate a cylinder, the cathode structure (48 mm long and 13.7 mm in diameter) is comprised of 10 faceted plates which cover the GFEA dies. Slits in the facet plates allow electron injection. The GFEA die (3 mm × 8 mm) are placed in axial columns of 3 and spaced azimuthally around a cylindrical support structure in a staggered configuration resulting in 10 azimuthal locations. LTCC manufacturing techniques were developed in order to fabricate the newly designed cathode with seven layers wrapped to form the cylinder with electrical traces and vias. Two different cathode wrapping techniques and two different via filling techniques were studied and compared. Two different facet plate manufacturing techniques were studied. Finally, four different support stand configurations for firing the cylindrical structure were also compared with a square post stand having the best circularity and linearity measurements of the fired structure.  相似文献   
85.
Loss of tolerance of the adaptive immune system towards indigenous flora contributes to the development of inflammatory bowel diseases (IBD). Defects in dendritic cell (DC)-mediated innate and adoptive immune responses are conceivable. The aim of this study was to investigate the expression of the inhibitory molecules CD200R1 and their ligand CD200 on DCs, to clarify the role of the DCs in the pathogenesis of IBD. Thirty-seven pediatric IBD patients (23 with Crohn’s disease (CD) and 14 with ulcerative colitis (UC)) with mean age 13.25 ± 2.9 years were included. Fourteen age-matched healthy pediatric volunteers (five males and nine females) served as a control group (HC). The percentage of CD11c+ myeloid dendritic cells (mDCs) and CD123+ plasmacytoid DCs (pDCs) expressing CD200R1 and CD200 were evaluated in peripheral blood using flow cytometry and were correlated with routine biochemical, serological markers, serum levels of cytokines and with the percentages of circulating regulatory T cells (Treg) and CD4+ producing IL-17 (Th17). IBD patients showed a significant decrease in the percentage of pDCs and mDCs expressing CD200R1 compared to that of HC. Patients with UC showed increased expressions of the CD200 molecule on pDCs as compared to HC. DCs expressing CD200R1 were found to be correlated positively with Treg and negatively with TH17 and erythrocyte sedimentation rate (ESR). Our findings suggest that IBD is associated with dysregulation in the CD200R1/CD200 axis and that the decrease in DCs expressing CD200R1 may contribute to the imbalance of Th17 and Treg cells and in the pathogenesis of IBD.  相似文献   
86.
The development of new materials for microorganism immobilization is very important in wastewater treatment. In this work polyurethane (PU) foams were modified polymerizing pyrrole and aniline onto their surface by chemical oxidization to obtain polyurethane/polypyrrole (PU/PPy), polyurethane/polyaniline (PU/PANI), and PU/(PPy‐co‐PANI) supports which were used to immobilize microorganisms for municipal wastewater treatment in batch mode and continuous flow using two sequential (anaerobic/aerobic) packed bed reactors (PBR) varying the total hydraulic retention time (HRT). The supports were characterized by Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) and tested in chemical oxygen demand (COD) removal during treatment of a municipal wastewater. It was observed from SEM analysis that globular nanostructures of PPy and PPy‐co‐PANI were formed onto the PU surface with average diameters between 100 and 300 nm, which are typical of aqueous polymerization of pyrrole monomer; however irregular nanostructures were observed when PANI was homopolymerized onto the PU foam. Batch wastewater treatment after 14 days showed COD removal efficiencies of 77%, 69%, 78%, and 80% for PU foam, PU/PPy, PU/PANI, and PU/(PPy‐co‐PANI), respectively; which was explained as a function of polymers morphology deposited onto the PU foam surface. Also it was observed from the sequential PBR that for 24 h and 36 h of HRT, 80 and 90% of COD removal can be achieved; respectively.© 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42242.  相似文献   
87.
The effect of replacing Sc2O3 with Yb2O3 on the structural and electrical properties of xYb2O3–(12–x)Sc2O3–88ZrO2 has been investigated. Spark plasma sintering technique is employed to fabricate dense bulk samples from the nano‐sized powders. X‐ray diffraction and transmission electron microscopy performed on pellets indicate the existence of cubic and rhombohedral phases in 12ScSZ, and a single cubic phase in all the co‐doped compositions. However, Raman spectroscopic studies suggest the presence of a metastable tetragonal t″‐phase along with rhombohedral phases in 12ScSZ, whereas a single cubic phase in all the co‐doped compositions. Significant enhancement in the conductivity of grain and grain boundary is observed on replacing Sc2O3 with Yb2O3. In the intermediate temperature range, 1Yb11ScSZ exhibits the highest, while 12ScSZ shows the lowest conductivity values, which is attributed to corresponding phases present in that range. Through co‐doping with >1 mol% Yb2O3 leads to conductivity decrease, but the value remains higher than that of 12ScSZ. A sharp conductivity change is observed in 12ScSZ and 1Yb11ScSZ samples, which is attributed to partial phase transition as well to the formation of cation‐vacancy complexes. In this work, the beneficial effect of Yb2O3 co‐doping in 12ScSZ on the phase and conductivity has been highlighted.  相似文献   
88.
The combination of experimental and numerical approaches is attempted to shed more light on 3D microstructural imperfections and mechanical performance of 3D printed acrylonitrile butadiene styrene parts. The starting point is the virtual building of airy structures using a reverse engineering approach. This approach combines microstructure generator, finite element model, and optimization strategy to propose virtual airy structures satisfying structural and mechanical criteria up to a desired porosity content of 60%. Optimal structures are printed using fused deposition modeling and X‐ray microtomography is used to assess all microstructural defects. Compression testing is performed for load levels above 50% of reduction in sample height. The main outcome of this work is the demonstration of small amount of process induced porosity inducing high pore connectivity. The interdependence of process induced and desired porosity reveals genuine microstructural effects that are only characteristics of 3D printed materials.

  相似文献   

89.
The effects of extraction solvent and conditions on the total phenolic content (TPC) and antioxidant activity of black beans, canola and foxtail millet were investigated. The antioxidant activity was assayed using 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging activity (DRSA) and oxygen radical absorbance capacity (ORAC). Four solvent systems, namely 70 % acetone, 80 % ethanol, 80 % methanol and a mixture of acetone/methanol/water (7:7:6, v/v/v) were used. The extraction methods adopted in this study included refluxing, homogenization, cold extraction and sonication. The TPC as measured using the Folin Ciocalteu's method were 12.35–28.39, 2.43–16.73, and 1.78–5.06 µmol catechin equivalents/g dry matter (dm) for canola, black beans and foxtail millet, respectively. Aqueous acetone afforded the highest TPC for black beans and canola. Within the same solvent system used, the TPC, DRSA and ORAC obtained from different extraction techniques differed for black beans, canola and foxtail millet. The results demonstrated that the solvent system as well as method influenced the extraction of phenolic compounds and their antioxidant activities, depending on the type of matrix in which phenolics were embedded.  相似文献   
90.
We have tested the insect antifeedant and toxic activity of 43 norditerpenoid alkaloids on Spodoptera littoralis and Leptinotarsa decemlineata including eserine (physostigmine), anabasine, and atropine. Antifeedant effects of the test compounds were structure- and species-dependent. The most active antifeedants to L. decemlineata were 1,14-diacetylcardiopetaline (9) and 18-hydroxy- 14-O-methylgadesine (33), followed by 8-O-methylconsolarine (12), 14-O-acetyldelectinine (27), karakoline (7), cardiopetaline (8), 18-O-demethylpubescenine (13), 14-O-acetyldeltatsine (18), takaosamine (21), ajadine (24), and 8-O-methylcolumbianine (6) (EC50 < 1 microg/cm2). This insect showed a moderate response to atropine. S. littoralis had the strongest antifeedant response to 24, 18, 14-O-acetyldelcosine (19), and delphatine (29) (EC50 < 3 microg/cm2). None of the model substances affected the feeding behavior of this insect. The most toxic compound to L. decemlineata was aconitine (1), followed by cardiopetalidine (10) (% mortality > 60), 14-deacetylpubescenine (14), 18-O-benzoyl-18-O-demethyl-14-O-deacetylpubescenine (17), 14-O-acetyldelcosine (19), 14-deacetylajadine (25) and methyllycaconitine (30) (% mortality > 45). Orally injected S. littoralis larvae were negatively affected by 1, cardiopetaline (8), 10, 1,14-O-acetylcardiopetalidina (11), 12, 14, 1,18-O-diacetyl-19-oxo-gigactonine (41), olivimine (43), and eserine in varying degrees. Their antifeedant or insecticidal potencies did not parallel their reported nAChR binding activity, but did correlate with the agonist/antagonist insecticidal/antifeedant model proposed for nicotininc insecticides. A few compounds [14, tuguaconitine (38), 14-demethyldelboxine (40), 19, dehydrodelsoline (36), 18-O-demethylpubescenine (13), 41, 9, and delcosine (23)] had selective cytotoxic effects to ward insect-derived Sf9 cells. None were cytotoxic to mammalian CHO cells and none increased Trypanosoma cruzi mortality. The selective cytotoxic effects of some structures indicate that they can act on biological targets other than neuroreceptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号