首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   25篇
电工技术   5篇
化学工业   97篇
金属工艺   3篇
机械仪表   3篇
建筑科学   10篇
矿业工程   1篇
能源动力   5篇
轻工业   38篇
无线电   28篇
一般工业技术   51篇
冶金工业   17篇
原子能技术   2篇
自动化技术   35篇
  2023年   5篇
  2022年   30篇
  2021年   28篇
  2020年   9篇
  2019年   8篇
  2018年   10篇
  2017年   13篇
  2016年   10篇
  2015年   11篇
  2014年   19篇
  2013年   18篇
  2012年   11篇
  2011年   18篇
  2010年   16篇
  2009年   12篇
  2008年   10篇
  2007年   14篇
  2006年   10篇
  2005年   3篇
  2004年   3篇
  2003年   8篇
  2002年   6篇
  2001年   5篇
  1999年   1篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
11.
Polyethersulphone/polytetrafluoroethylene (PES/PTFE) nanocomposites and composites were prepared by precipitation of PES into a PTFE latex‐containing nanoparticles. Different samples were obtained by varying the relative ratio between PES and PTFE. The complex crystallization process, discussed within the fractionated crystallization frame, allowed to identify and quantify different dispersion degree of the PTFE nanoparticles within the PES matrix. The different samples were thus divided into nanocomposite and composites. The effect of crystalline PTFE domains on the mobility of PES was investigated and discussed. The dynamic‐mechanical behavior was explained in terms of the particle aggregation state. The mechanical properties of the PES/PTFE composites were found to depend on both the dispersion and the concentration of the PTFE nanoparticles. In the glassy state the stiffness of the materials was found to increase with the dispersion degree, resulting higher for the nanocomposite with respect to composites. On the contrary, in the rubbery state the modulus was found proportional to the PTFE nanoparticles concentration, resulting higher in the composites with respect to the nanocomposite. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3624–3633, 2013  相似文献   
12.
Aluminium (Al) is the most common natural metallic element in the Earth’s crust. It is released into the environment through natural processes and human activities and accumulates in aquatic environments. This review compiles scientific data on the neurotoxicity of aluminium contamination on the nervous system of aquatic organisms. More precisely, it helps identify biomarkers of aluminium exposure for aquatic environment biomonitoring in freshwater aquatic vertebrates. Al is neurotoxic and accumulates in the nervous system of aquatic vertebrates, which is why it could be responsible for oxidative stress. In addition, it activates and inhibits antioxidant enzymes and leads to changes in acetylcholinesterase activity, neurotransmitter levels, and in the expression of several neural genes and nerve cell components. It also causes histological changes in nerve tissue, modifications of organism behaviour, and cognitive deficit. However, impacts of aluminium exposure on the early stages of aquatic vertebrate development are poorly described. Lastly, this review also poses the question of how accurate aquatic vertebrates (fishes and amphibians) could be used as model organisms to complement biological data relating to the developmental aspect. This “challenge” is very relevant since freshwater pollution with heavy metals has increased in the last few decades.  相似文献   
13.
Wound healing (WH) proceeds through four distinct phases: hemostasis, inflammation, proliferation, and remodeling. Impaired WH may be the consequence of the alteration of one of these phases and represents a significant health and economic burden to millions of individuals. Thus, new therapeutic strategies are the topics of intense research worldwide. Although radiofrequency electromagnetic field (RF-EMF) has many medical applications in rehabilitation, pain associated with musculoskeletal disorders, and degenerative joint disorders, its impact on WH is not fully understood. The process of WH begins just after injury and continues during the inflammatory and proliferative phases. A thorough understanding of the mechanisms by which RF-EMF can improve WH is required before it can be used as a non-invasive, inexpensive, and easily self-applicable therapeutic strategy. Thus, the aim of this study is to explore the therapeutic potential of different exposure setups of RF-EMF to drive faster healing, evaluating the keratinocytes migration, cytokines, and matrix metalloproteinases (MMPs) expression. The results showed that RF-EMF treatment promotes keratinocytes’ migration and regulates the expression of genes involved in healing, such as MMPs, tissue inhibitors of metalloproteinases, and pro/anti-inflammatory cytokines, to improve WH.  相似文献   
14.
Spirulina (Arthrospira), a filamentous, unicellular alga, is a cyanobacterium grown in certain countries as food for human and animal consumption. It is also used to derive additives in pharmaceuticals and foods. This alga is a rich source of proteins, vitamins, amino acids, minerals, and other nutrients. Its main use, therefore, is as a food supplement. Over the last few years, however, it has been found to have many additional pharmacological properties. Thus, it has been experimentally proven, in vivo and in vitro that it is effective to treat certain allergies, anemia, cancer, hepatotoxicity, viral and cardiovascular diseases, hyperglycemia, hyperlipidemia, immunodeficiency, and inflammatory processes, among others. Several of these activities are attributed to Spirulina itself or to some of its components including fatty acids omega-3 or omega-6, beta-carotene, alpha-tocopherol, phycocyanin, phenol compounds, and a recently isolated complex, Ca-Spirulan (Ca-SP). This paper aims to update and critically review the results published over the last few years with regards to these properties. The conclusion is that even if this cyanobacterium has been one of the most extensively studied from the chemical, pharmacological and toxicological points of view, it is still necessary to expand the research in order to have more consistent data for its possible use in human beings.  相似文献   
15.
Fibrillar reinforced composites of polytetrafluoroethylene (PTFE) and polycarbonate (PC) were prepared by in situ fibrillation of PTFE into PC matrix using twin screw extruder. Different samples were obtained by varying the relative ratio between PC and PTFE. The rheological properties of the PC/PTFE composites were found to depend on concentration of the PTFE fibrils. The melt strength analysis in nonisothermal conditions was also studied. The increase in force and decrease in drawability with increasing the PTFE content are associated with the PTFE fibrils formed in situ during the thermomechanical process in twin screw extruder. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42401.  相似文献   
16.
The cover image, by Katia Sparnacci et al., is based on the Research Article High temperature surface neutralization process with random copolymers for block copolymer self‐assembly, DOI: 10.1002/pi.5285 .

  相似文献   

17.
Synthetic saponite containing Ni2+ as octahedral cations has been prepared by a simple hydrothermal procedure, and has been intercalated with Al13-polycations. The catalytic performance of the pillared solids in the epoxidation of (Z)-cyclooctene and the oxidation of cyclohexanone in the presence of benzonitrile, Baeyer–Villiger reaction, using hydrogen peroxide (70%) as a clean oxidant have been studied. For comparison, Mg-saponite was synthesized under the same conditions and tested for the same reaction.  相似文献   
18.
Acute promyelocytic leukemia (APL) represents a paradigm of precision medicine. Indeed, in the last decades, the introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) completely revolutionized the therapeutic approach to this previously highly fatal disorder. This entirely chemotherapy-free treatment, which provided excellent survival rates, has been initially validated in adults and, recently, translated in the pediatric setting. This review summarizes currently available data on the use of ATRA and ATO combination in pediatric APL, providing a particular focus on peculiar issues and challenges, such as the occurrence of pseudotumor cerebri and death during induction (early death), as well as the advantage offered by the ATO/ATRA combination in sparing long-term sequelae.  相似文献   
19.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
20.
LL37 acts as T-cell/B-cell autoantigen in Systemic lupus erythematosus (SLE) and psoriatic disease. Moreover, when bound to “self” nucleic acids, LL37 acts as “danger signal,” leading to type I interferon (IFN-I)/pro-inflammatory factors production. T-cell epitopes derived from citrullinated-LL37 act as better antigens than unmodified LL37 epitopes in SLE, at least in selected HLA-backgrounds, included the SLE-associated HLA-DRB1*1501/HLA-DRB5*0101 backgrounds. Remarkably, while “fully-citrullinated” LL37 acts as better T-cell-stimulator, it loses DNA-binding ability and the associated “adjuvant-like” properties. Since LL37 undergoes a further irreversible post-translational modification, carbamylation and antibodies to carbamylated self-proteins other than LL37 are present in SLE, here we addressed the involvement of carbamylated-LL37 in autoimmunity and inflammation in SLE. We detected carbamylated-LL37 in SLE-affected tissues. Most importantly, carbamylated-LL37-specific antibodies and CD4 T-cells circulate in SLE and both correlate with disease activity. In contrast to “fully citrullinated-LL37,” “fully carbamylated-LL37” maintains both innate and adaptive immune-cells’ stimulatory abilities: in complex with DNA, carbamylated-LL37 stimulates plasmacytoid dendritic cell IFN-α production and B-cell maturation into plasma cells. Thus, we report a further example of how different post-translational modifications of a self-antigen exert complementary effects that sustain autoimmunity and inflammation, respectively. These data also show that T/B-cell responses to carbamylated-LL37 represent novel SLE disease biomarkers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号