首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   26篇
  国内免费   1篇
电工技术   3篇
化学工业   63篇
金属工艺   27篇
机械仪表   14篇
建筑科学   3篇
能源动力   10篇
轻工业   35篇
无线电   64篇
一般工业技术   81篇
冶金工业   8篇
原子能技术   7篇
自动化技术   20篇
  2023年   4篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   14篇
  2018年   10篇
  2017年   11篇
  2016年   12篇
  2015年   10篇
  2014年   11篇
  2013年   16篇
  2012年   26篇
  2011年   35篇
  2010年   35篇
  2009年   30篇
  2008年   22篇
  2007年   13篇
  2006年   10篇
  2005年   13篇
  2004年   8篇
  2003年   8篇
  2002年   4篇
  2001年   6篇
  2000年   1篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有335条查询结果,搜索用时 0 毫秒
41.
The present study is concerned with γ-(Ti52Al48)100−x B x (x=0, 0.5, 2, 5) alloys produced by mechanical milling/vacuum hot pressing (VHPing) using melt-extracted powders. Microstructure of the as-vacuum hot pressed (VHPed) alloys exhibits a duplex equiaxed microstructure of α2 and γ with a mean grain size of 200 nm. Besides α2 and γ phases, binary and 0.5 pct B alloys contain Ti2AlN and Al2O3 phases located along the grain boundaries and show appreciable coarsening in grain and dispersoid sizes during annealing treatment at 1300 °C for 5 hours. On the other hand, 2 pct B and 5 pct B alloys contain fine boride particles within the γ grains and show minimal coarsening during annealing. Room-temperature compressing tests of the as-VHPed alloys show low ductility, but very high yield strength >2100 MPa. After annealing treatment, mechanically milled alloys show much higher yield strength than conventional powder metallurgy and ingot metallurgy processed alloys, with equivalent ductility to ingot metallurgy processed alloys. The 5 pct B alloy with the smallest grain size shows higher yield strength than binary alloy up to the test temperature of 700 °C. At 850 °C, 5 pct B alloy shows much lower strength than the binary alloy, indicating that the deformation of fine 5 pct B alloy is dominated by the grain boundary sliding mechanism. This article is based on a presentation made in the symposium “Mechanical Behavior of Bulk Nanocrystalline Solids,” presented at the 1997 Fall TMS Meeting and Materials Week, September 14–18, 1997, in Indianapolis, Indiana, under the auspices of the Mechanical Metallurgy (SMD), Powder Materials (MDMD), and Chemistry and Physics of Materials (EMPMD/SMD) Committees.  相似文献   
42.
In this paper, a new analytical method for solving stable crack propagation problems in a ductile panel with a row of cracks, is presented. The main purpose of the present study is to estimate the maximum load carrying capacity of such panels accurately. The so called Elastic Plastic Finite Element Alternating Method (Pyo et al. (1994) was extended to account for the propagating cracks. The crack propagation algorithm utilizes the analytic crack solution to release the stresses ahead the crack tip. The T inf sup* integral is employed as the crack extension criterion. This integral parameter accounts for the near tip stress-strain singularity and its critical values for crack propagation can be extracted from the P-a curve of single cracked specimen case. The present method can be applied to the problems of the fuselage skin of aging airplanes, in which a row of cracks develop (MSD; Multiple Site Damage) from rivet holes. The load carrying capacity of such damaged structure reduces by a considerable amount. In order to predict the behavior near the critical load, one must account for plastic deformation, if the material is ductile. Furthermore, the maximum load carried by the structure is often reached after some amount of crack propagation. In this paper, a series of analyses have been conducted and their results compare with the available experimental data.  相似文献   
43.
This paper describes some simplified stable crack growth analyses of two kinds of inhomogeneous CT specimens. The one is machined from a submerged are welded plate of a nuclear pressure vessel A533B Class 1 steel, while the other is machined from an electron-beam welded plate of the A533B Class 1 steel and a high strength HT80 steel. In both specimens, initial cracks are placed to be normal to the fusion line. The ratio of yield stresses of the weld metal and the base metal of the A533B Class 1 steel is about 1·15, while that of the HT80 and the A533B Class 1 steels is about 1·4.

The generation phase crack growth analyses using the GE/EPRI and the reference stress methods are performed, calculating an applied load (P) and the J-value, while the application phase analyses of analyses using the R6 method are performed to calculate the maximum value of the applied load (Pmax). Finally, some modification procedures of the three simplified estimation schemes are discussed in order to apply them to inhomogeneous material regimes.  相似文献   

44.
Crystalline water-free β-phase Ca0.14V2O5 is reported for the first time as a viable cathode material for calcium-ion batteries (CIBs). In contrast to layered α-V2O5 and δ-CaxV2O5·nH2O, which have limited capacity, the β-phase delivers a reversible capacity of ≈247 mAh g−1, which corresponds to the insertion/extraction of Ca2+ between Ca0.14V2O5 and Ca1.0V2O5. The process of Ca2+ insertion process and the accompanying structural relaxation are theoretically and experimentally verified. The initial insertion of Ca2+ into Ca0.14V2O5 causes a slight shift of oxygen atoms surrounding hepta-coordination sites, creating penta-coordinated sites that are then partially filled up to Ca0.33V2O5. Further insertion occurs through the stepwise occupation of up to 50% of neighboring hexa- and tetra-coordination sites to form Ca0.67V2O5 and Ca1.0V2O5, respectively. The rearrangement of oxygen atoms in Ca0.14V2O5 also minimizes dimensional changes, leading to high cyclic stability during repeated charge/discharge cycles. The remarkable electrochemical performance of full cells containing a Ca0.14V2O5 cathode and a K metal anode in Ca2+/K+ hybrid electrolytes, is also demonstrated, thanks to the inertness of K+ insertion into Ca0.14V2O5 and the absence of calcium plating/stripping. The cyclic stability and high capacity of Ca0.14V2O5 is not compromised in hybrid electrolytes, making it a viable CIB cathode.  相似文献   
45.
Although there have been remarkable improvements in stretchable strain sensors, the development of strain sensors with scalable fabrication techniques and which both high sensitivity and stretchability simultaneously is still challenging. In this work, a stretchable strain sensor based on overlapped carbon nanotube (CNT) bundles coupled with a silicone elastomer is presented. The strain sensor with overlapped CNTs is prepared by synthesizing line‐patterned vertically aligned CNT bundles and rolling and transferring them to the silicone elastomer. With the sliding and disconnection of the overlapped CNTs, the strain sensor performs excellently with a broad sensing range (≥145% strain), ultrahigh sensitivity (gauge factor of 42 300 at a strain of 125–145%), high repeatability, and durability. The performance of the sensor is also tunable by controlling the overlapped area of CNT bundles. Detailed mechanisms of the sensor and its applications in human motion detection are also further investigated. With the novel structure and mechanism, the sensor can detect a wide range of strains with high sensitivity, demonstrating the potential for numerous applications including wearable healthcare devices.  相似文献   
46.
47.
48.
Hypoxic–ischemic encephalopathy (HIE) is a devastating neonatal brain condition caused by lack of oxygen and limited blood flow. Environmental enrichment (EE) is a classic paradigm with a complex stimulation of physical, cognitive, and social components. EE can exert neuroplasticity and neuroprotective effects in immature brains. However, the exact mechanism of EE on the chronic condition of HIE remains unclear. HIE was induced by a permanent ligation of the right carotid artery, followed by an 8% O2 hypoxic condition for 1 h. At 6 weeks of age, HIE mice were randomly assigned to either standard cages or EE cages. In the behavioral assessments, EE mice showed significantly improved motor performances in rotarod tests, ladder walking tests, and hanging wire tests, compared with HIE control mice. EE mice also significantly enhanced cognitive performances in Y-maze tests. Particularly, EE mice showed a significant increase in Cav 2.1 (P/Q type) and presynaptic proteins by molecular assessments, and a significant increase of Cav 2.1 in histological assessments of the cerebral cortex and hippocampus. These results indicate that EE can upregulate the expression of the Cav 2.1 channel and presynaptic proteins related to the synaptic vesicle cycle and neurotransmitter release, which may be responsible for motor and cognitive improvements in HIE.  相似文献   
49.
Yoo  Byoung-Wook  Kim  Bom  Joshi  Pankaj  Kwon  Sung-Ok  Kim  YeonJin  Oh  Jung-Sook  Kim  Jeongseon  Oh  Se-Young  Lim  Ji-Ae  Choi  Byung-Sun  Kim  Yu-Mi  Eom  Sang-Yong  Hong  Young-Seob  Sohn  Seok-Joon  Park  Kyung-Su  Pyo  Heesoo  Kim  Ho  Ha  Mina  Park  Jung-Duck  Kwon  Ho-Jang  Lee  Sang-Ah 《Food science and biotechnology》2018,27(4):1227-1237
Food Science and Biotechnology - This study was aimed to examine the association the blood/urinary concentration of toxic metal (Hg, Pb, and Cd) with children’s dietary patterns. This...  相似文献   
50.
Dye-Sensitized Solar Cells (DSSCs) comprised of TiO2 porous films with multi-walled carbon nanotubes (MWNT) were prepared at low temperature (150 degrees C). MWNT were incorporated to facilitate the fast electron transport resulting from metallic properties of carbon nanotubes. In order to enhance the effect of MWNT incorporation, TiO2-grafted MWNT (TiO2-MWNT) was synthesized which can increase the electron transport rate further due to proximity of TiO2 to MWNT The presence of TiO2 nanoparticles on the surface of MWNT was confirmed by electron microscopy and energy dispersive X-ray spectroscopy. As in the DSSCs prepared through high temperature sintering of photoanodes, the maximum content of MWNT incorporated into TiO2 was limited to 0.01 wt% relative to TiO2. TiO2 photoanodes including TiO2-grafted MWNT (TiO2-MWNT/P25) enhanced the cell efficiencies by ca. 28% and 14%, relative to TiO2 photoanodes without and with MWNT respectively, reaching the efficiency of 5.0%. Electrochemical impedance spectroscopy (EIS) was utilized to examine the effect of incorporation of TiO2 nanoparticles grafted to MWNT on the cell performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号