全文获取类型
收费全文 | 24846篇 |
免费 | 2211篇 |
国内免费 | 1066篇 |
专业分类
电工技术 | 1352篇 |
技术理论 | 4篇 |
综合类 | 1499篇 |
化学工业 | 4283篇 |
金属工艺 | 1454篇 |
机械仪表 | 1655篇 |
建筑科学 | 1804篇 |
矿业工程 | 999篇 |
能源动力 | 836篇 |
轻工业 | 1763篇 |
水利工程 | 489篇 |
石油天然气 | 1537篇 |
武器工业 | 165篇 |
无线电 | 2660篇 |
一般工业技术 | 3158篇 |
冶金工业 | 1378篇 |
原子能技术 | 270篇 |
自动化技术 | 2817篇 |
出版年
2024年 | 341篇 |
2023年 | 537篇 |
2022年 | 726篇 |
2021年 | 1085篇 |
2020年 | 838篇 |
2019年 | 691篇 |
2018年 | 811篇 |
2017年 | 855篇 |
2016年 | 798篇 |
2015年 | 958篇 |
2014年 | 1234篇 |
2013年 | 1521篇 |
2012年 | 1551篇 |
2011年 | 1645篇 |
2010年 | 1492篇 |
2009年 | 1341篇 |
2008年 | 1333篇 |
2007年 | 1259篇 |
2006年 | 1223篇 |
2005年 | 1085篇 |
2004年 | 761篇 |
2003年 | 698篇 |
2002年 | 706篇 |
2001年 | 592篇 |
2000年 | 547篇 |
1999年 | 607篇 |
1998年 | 495篇 |
1997年 | 419篇 |
1996年 | 378篇 |
1995年 | 319篇 |
1994年 | 304篇 |
1993年 | 228篇 |
1992年 | 174篇 |
1991年 | 125篇 |
1990年 | 67篇 |
1989年 | 73篇 |
1988年 | 77篇 |
1987年 | 48篇 |
1986年 | 34篇 |
1985年 | 23篇 |
1984年 | 15篇 |
1983年 | 11篇 |
1982年 | 14篇 |
1981年 | 11篇 |
1980年 | 7篇 |
1979年 | 11篇 |
1977年 | 5篇 |
1975年 | 5篇 |
1954年 | 4篇 |
1947年 | 5篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
文中讨论了偏振态脉冲激光辐射微孔加工的一些实验。首次发现了偏振态激光打孔具有的独特优势一良好圆度、边缘光洁整体和较高的重复性;分析了其原因,同时对偏振态脉冲激光辐射影响微孔质量(孔形、孔深、锥度、人口孔径)的一些因素,如泵浦能量、光阑的选择及其大小,光学系统的焦距等也作了较为详细的研究和测试,得到了具有参考价值的结果。 相似文献
92.
93.
94.
95.
Zhe Peng Xia Cao Peiyuan Gao Haiping Jia Xiaodi Ren Swadipta Roy Zhendong Li Yun Zhu Weiping Xie Dianying Liu Qiuyan Li Deyu Wang Wu Xu Ji‐Guang Zhang 《Advanced functional materials》2020,30(24)
To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated. 相似文献
96.
Temperature‐Mediated Engineering of Graphdiyne Framework Enabling High‐Performance Potassium Storage
Yuyang Yi Jiaqiang Li Wen Zhao Zhihan Zeng Chen Lu Hao Ren Jingyu Sun Jin Zhang Zhongfan Liu 《Advanced functional materials》2020,30(31)
Graphdiyne (GDY), an emerging type of carbon allotropes, possesses fascinating electrical, chemical, and mechanical properties to readily spark energy applications in the realm of Li‐ion and Na‐ion batteries. Nevertheless, rational design of GDY architectures targeting advanced K‐ion storage has rarely been reported to date. Herein, the first example of synthesizing GDY frameworks in a scalable fashion to realize superb potassium storage for high‐performance K‐ion battery (KIB) anodes is showcased. To begin with, first principles calculations provide theoretical guidances for analyzing the intrinsic potassium storage capability of GDY. Meanwhile, the specific capacity is predicted to be as high as 620 mAh g?1, which is considerably augmented as compared with graphite (278 mAh g?1). Experimental tests then reveal that prepared GDY framework indeed harvests excellent electrochemical performance as a KIB anode, achieving high specific capacity (≈505 mAh g?1 at 50 mA g?1), outstanding rate performance (150 mAh g?1 at 5000 mA g?1) and favorable cycling stability (a high capacity retention of over 90% after 2000 cycles at 1000 mA g?1). Furthermore, kinetic analysis reveals that capacitive effect mainly accounts for the K‐ion storage, with operando Raman spectroscopy/ex situ X‐ray photoelectron spectroscopy identifying good electrochemical reversibility of GDY. 相似文献
97.
98.
The electromagnetic shielding film has drawn much attention due to its wide applications in the integrated circuit package, which demands a high surface quality of epoxy resin. However, gaseous Cu will splash and adhere to epoxy resin surface when the Cu layer in PCB receives enough energy in the process of laser cutting, which has a negative effect on the quality of the shielding film. Laser polishing technology can solve this problem and it can effectively improve the quality of epoxy resin surface. The paper studies the mechanism of Cu powder spraying on the compound surface by 355 nm ultraviolet (UV) laser, including the parameters of laser polishing process and the remains of Cu content on compound surface. The results show that minimal Cu content can be realized with a scanning speed of 700 mm/s, a laser frequency of 50 kHz and the distance between laser focus and product top surface of -1.3 mm. This result is important to obtain an epoxy resin surface with high quality. 相似文献
99.
100.
Durlam M. Naji P.J. Omair A. DeHerrera M. Calder J. Slaughter J.M. Engel B.N. Rizzo N.D. Grynkewich G. Butcher B. Tracy C. Smith K. Kyler K.W. Ren J.J. Molla J.A. Feil W.A. Williams R.G. Tehrani S. 《Solid-State Circuits, IEEE Journal of》2003,38(5):769-773
A low-power 1-Mb magnetoresistive random access memory (MRAM) based on a one-transistor and one-magnetic tunnel junction (1T1MTJ) bit cell is demonstrated. This is the largest MRAM memory demonstration to date. In this circuit, the magnetic tunnel junction (MTJ) elements are integrated with CMOS using copper interconnect technology. The copper interconnects are cladded with a high-permeability layer which is used to focus magnetic flux generated by current flowing through the lines toward the MTJ devices and reduce the power needed for programming. The 25-mm/sup 2/ 1-Mb MRAM circuit operates with address access times of less than 50 ns, consuming 24 mW at 3.0 V and 20 MHz. The 1-Mb MRAM circuit is fabricated in a 0.6-/spl mu/m CMOS process utilizing five layers of metal and two layers of poly. 相似文献