首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   927篇
  免费   91篇
  国内免费   2篇
电工技术   20篇
综合类   1篇
化学工业   237篇
金属工艺   17篇
机械仪表   24篇
建筑科学   36篇
矿业工程   6篇
能源动力   26篇
轻工业   94篇
水利工程   7篇
无线电   87篇
一般工业技术   181篇
冶金工业   18篇
原子能技术   20篇
自动化技术   246篇
  2024年   3篇
  2023年   16篇
  2022年   41篇
  2021年   67篇
  2020年   46篇
  2019年   32篇
  2018年   33篇
  2017年   39篇
  2016年   45篇
  2015年   33篇
  2014年   45篇
  2013年   67篇
  2012年   64篇
  2011年   77篇
  2010年   50篇
  2009年   51篇
  2008年   50篇
  2007年   26篇
  2006年   42篇
  2005年   27篇
  2004年   19篇
  2003年   21篇
  2002年   22篇
  2001年   14篇
  2000年   6篇
  1999年   13篇
  1998年   9篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1977年   1篇
  1967年   2篇
排序方式: 共有1020条查询结果,搜索用时 31 毫秒
151.
By tuning a control parameter, a chaotic system can either display two or more attractors (generalized multistability) or exhibit an interior crisis, whereby a chaotic attractor suddenly expands to include the region of an unstable orbit (bursting regime).Recently, control of multistability and bursting have been experimentally proved in a modulated class B laser by means of a feedback method. In a bistable regime, the method relies on the knowledge of the frequency components of the two attractors. Near an interior crisis, the method requires retrieval of the unstable orbit colliding with the chaotic attractor.We also show that a suitable parameter modulation is able to control bistability in the Lorenz system. We observe that, for every given modulation frequency, the chaotic attractor is destroyed under a boundary crisis. The threshold control amplitude depends on the control frequency and the location of the operating point in the bistable regime. Beyond the boundary crisis, the system remains in the steady state even if the control is switched off, demonstrating control of bistability.  相似文献   
152.
Two new multichromophoric electrochromic polymers featuring a conjugated EDOT/ProDOT copolymer backbone (PXDOT) and a reversible Weitz‐type redox active small molecule electrochrome (WTE) tethered to the conjugated chain are reported here. The careful design of the WTEs provides a highly reversible redox behavior with a colorless red switching that complements the colorless blue switching of the conjugated backbone. Subtractive color mixing successfully provides high performing solution processable polymeric layers with colorless neutral tint switchable limiting states for application in see‐through electrochromic devices. Design, synthesis, comprehensive chemical and spectroelectrochemical characterization as well as the preparation of a proof‐of‐concept device are discussed.  相似文献   
153.
Tumor-associated macrophages play a key role in promoting tumor progression by exerting an immunosuppressive phenotype associated with the expression of programmed cell death ligand 1 (PD-L1). It is well known that tumor-derived small extracellular vesicles (SEVs) affect the tumor microenvironment, influencing TAM behavior. The present study aimed to examine the effect of SEVs derived from colon cancer and multiple myeloma cells on macrophage functions. Non-polarized macrophages (M0) differentiated from THP-1 cells were co-cultured with SEVs derived from a colorectal cancer (CRC) cell line, SW480, and a multiple myeloma (MM) cell line, MM1.S. The expression of PD-L1, interleukin-6 (IL-6), and other inflammatory cytokines as well as of the underlying molecular mechanisms were evaluated. Our results indicate that SEVs can significantly upregulate the expressions of PD-L1 and IL-6 at both the mRNA and protein levels and can activate the STAT3 signaling pathway. Furthermore, we identified the TLR4/NF-kB pathway as a convergent mechanism for SEV-mediated PD-L1 expression. Overall, these preliminary data suggest that SEVs contribute to the formation of an immunosuppressive microenvironment.  相似文献   
154.
Scaling effects in Sesqui-chalcogenides are of major interest to understand and optimize their performance in heavily scaled applications, including topological insulators and phase-change devices. A combined experimental and theoretical study is presented for molecular beam epitaxy-grown films of antimony-telluride  (Sb2Te3). Structural,vibrational, optical, and bonding properties upon varying confinement are studied for thicknesses ranging from 1.3 to 56 nm. In ultrathin films, the low-frequency coherent phonons of A1g1 symmetry are softened compared to the bulk (64.5 cm−1 at 1.3 nm compared to 68 cm−1 at 55.8 nm). A concomitant increase of the high-frequency A1g2 Raman mode is seen. X-ray diffraction analyses unravel an accompanying out of plane stretch by 5%, mainly stemming from an increase in the Te-Te gap. This conclusion is supported by density functional theory slab models, which reveal a significant dependency of chemical bonding on film thickness. Changes in atomic arrangement, vibrational frequencies, and bonding extend over a thickness range much larger than observed for other material classes. The finding of these unexpectedly pronounced thickness-dependent effects in quasi-2D material Sb2Te3 allows tuning of the film properties with thickness. The results are discussed in the context of a novel bond-type, characterized by a competition between electron localization and delocalization.  相似文献   
155.
Carbon nanotubes are emerging as innovative tools in nanobiotechnology. However, their toxic effects on environment and health have become an issue of strong concern. In the present study, we address the impact of functionalized carbon nanotubes (f-CNTs) on cells of the immune system. We have prepared two types of f-CNTs, following the 1,3-dipolar cycloaddition reaction (f-CNTs 1 and 2) and the oxidation/amidation treatment (f-CNTs 3 and 4), respectively. We have found that both types of f-CNTs are uptaken by B and T lymphocytes as well as macrophages in vitro, without affecting cell viability. Subsequently, the functionality of the different cells was analyzed carefully. We discovered that f-CNT 1, which is highly water soluble, did not influence the functional activity of immunoregulatory cells. f-CNT 3, which instead possesses reduced solubility and forms mainly stable water suspensions, preserved lymphocytes' functionality while provoking secretion of proinflammatory cytokines by macrophages.  相似文献   
156.
Understanding and controlling the chemical reactivity of carbon nanotubes (CNTs) is a fundamental requisite to prepare novel nanoscopic structures with practical uses in materials applications. Here, we present a comprehensive microscopic and spectroscopic characterization of carbon nanotubes which have been chemically modified. Specifically, scanning tunneling microscopy (STM) investigations of short-oxidized single-walled carbon nanotubes (SWNTs) functionalized with aliphatic chains via amide reaction reveal the presence of bright lumps both on the sidewalls and at the tips. The functionalization pattern is consistent with the oxidation reaction which mainly occurs at the nanotube tips. Thermogravimetric analysis (TGA), steady-state electronic absorption (UV-vis-NIR), and Raman spectroscopic studies confirm the STM observations.  相似文献   
157.
158.
159.
Yan B  Rurali R  Gali A 《Nano letters》2012,12(7):3460-3465
A phosphorus (P) donor has been extensively studied in bulk Si to realize the concept of Kane quantum computers. In most cases the quantum bit was realized as an entanglement between the donor electron spin and the nonzero nuclei spin of the donor impurity mediated by the hyperfine coupling between them. The donor ionization energies and the spin-lattice relaxation time limited the temperatures to a few kelvin in these experiments. Here, we demonstrate by means of ab initio density functional theory calculations that quantum confinement in thin Si nanowires (SiNWs) results in (i) larger excitation energies of donor impurity and (ii) a sensitive manipulation of the hyperfine coupling by external electric field. We propose that these features may allow to realize the quantum bit (qubit) experiments at elevated temperatures with a strength of electric fields applicable in current field-effect transistor technology. We also show that the strength of quantum confinement and the presence of strain induced by the surface termination may significantly affect the ground and excited states of the donors in thin SiNWs, possibly allowing an optical read-out of the electron spin.  相似文献   
160.
Carbohydrate-based sensors, that specifically detect sugar binding molecules or cells, are increasingly important in medical diagnostic and drug screening. Here we demonstrate that cantilever arrays functionalized with different mannosides allow the real-time detection of several Escherichia coli strains in solution. Cantilever deflection is thereby dependent on the bacterial strain studied and the glycan used as the sensing molecule. The cantilevers exhibit specific and reproducible deflection with a sensitivity range over four orders of magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号