首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   23篇
  国内免费   10篇
电工技术   10篇
综合类   6篇
化学工业   80篇
金属工艺   11篇
机械仪表   26篇
建筑科学   15篇
能源动力   17篇
轻工业   28篇
水利工程   6篇
石油天然气   13篇
无线电   50篇
一般工业技术   72篇
冶金工业   18篇
原子能技术   3篇
自动化技术   88篇
  2024年   1篇
  2023年   10篇
  2022年   11篇
  2021年   23篇
  2020年   16篇
  2019年   24篇
  2018年   34篇
  2017年   35篇
  2016年   29篇
  2015年   12篇
  2014年   16篇
  2013年   43篇
  2012年   37篇
  2011年   37篇
  2010年   35篇
  2009年   22篇
  2008年   13篇
  2007年   15篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   4篇
排序方式: 共有443条查询结果,搜索用时 156 毫秒
61.
The cylindrical wire electrical discharge turning (CWEDT) process was developed to generate precise cylindrical forms on hard, difficult to machine materials. A precise, flexible, and corrosion-resistant submerged rotary spindle was designed and added to a conventional five-axis CNC wire electrical discharge machine (EDM) to enable the generation of free-form cylindrical geometries. The hardness and strength of the work material are no longer the dominating factors that affect the tool wear and hinder the machining process. In this study, the effect of machining parameters on surface roughness (R a) and roundness in cylindrical CWEDT of a AISI D3 tool steel is investigated. The selection of this material was made taking into account its wide range of applications in tools, dies, and molds and in industries such as punching, tapping, reaming, and so on in cylindrical forms. Surface roughness and roundness are chosen as two of the machining performances to verify the process. In addition, power, pulse off-time, voltage, and spindle rotational speed are adopted for evaluation by full factorial design of experiments. In this case, a 22?×?32 mixed full factorial design has been selected considering the number of factors used in the present study. The main effects of factors and interactions were considered in this paper, and regression equations were derived using response surface methodology. Finally, the surfaces of the CWEDT parts were examined using scanning electron microscopy (SEM) to identify the macro-ridges and craters on the surface. Cross sections of the EDM parts were examined using the SEM and microhardness tests to quantify the sub-surface recast layers and heat-affected zones under specific process parameters.  相似文献   
62.
In this work, the effects of three ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium dicyanamide and tetraethyl-ammonium chloride, on methane hydrate formation and dissociation kinetic parameters were studied. The kinetic parameters including the initial rate of hydrate formation, hydrate stability at atmospheric pressure and hydrate storage capacity were evaluated. The experimental measurements were performed in an initial pressure range of 3.5–7.1 MPa. It was found that both of ILs with imidazolium-based cation increase the initial methane hydrate formation rate while the IL with ammonium-based cation leads to a decrease in the initial methane hydrate formation rate. It was also interpreted from the results that all of the three studied ILs decrease methane hydrate stability at atmospheric pressure and increase methane hydrate storage capacity. Finally, both of ILs with imidazolium-based cations were found to have higher impacts on decreasing hydrate stability at atmospheric pressure and increasing the methane hydrate storage capacity than the applied IL with ammonium-based cation.  相似文献   
63.
In this work, the effects of three ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium dicyanamide and tetraethyl-ammonium chloride, on methane hydrate formation and dissociation kinetic parameters were studied. The kinetic parameters including the initial rate of hydrate formation, hydrate stability at atmospheric pressure and hydrate storage capacity were evaluated. The experimental measurements were performed in an initial pressure range of 3.5-7.1 MPa. It was found that both of ILs with imidazolium-based cation increase the initial methane hydrate formation rate while the IL with ammonium-based cation leads to a decrease in the initial methane hydrate formation rate. It was also interpreted from the results that all of the three studied ILs decrease methane hydrate stability at atmospheric pressure and increase methane hydrate storage capacity. Finally, both of ILs with imidazolium-based cations were found to have higher impacts on decreasing hydrate stability at atmospheric pressure and increasing the methane hydrate storage capacity than the applied IL with ammonium-based cation.  相似文献   
64.
CoAl2O4 spinel was successfully synthesized by combustion synthesis method using glycine and urea by 1:1 molar ratio as fuels and sol-gel process using citric acid as a chelating agent. The as-synthesized powders were calcined at desired temperatures to obtain CoAl2O4 spinel as a single phase. X-ray diffraction, thermogravimetric, and differential thermal analysis results revealed that the formation of CoAl2O4 spinel in combustion method needs 300°C higher temperatures than those of sol-gel. Scanning electron microscopy and transmission electron microscopy analysis results revealed that “sol-gel spinel” had nanometric particle size which was smaller than those of “combustion spinel.” Temperature programed reduction with hydrogen and Fourier transform infrared spectroscopy results declared that there was a little residual cobalt oxide in combustion spinel while there is no oxide resided in “sol-gel spinel.” Consequently, the sol-gel method has more benefit in synthesizing spinel with sulfate precursors than combustion.  相似文献   
65.
Knowledge and Information Systems - The standard machine learning tasks often assume that the training (source domain) and test (target domain) data follow the same distribution and feature space....  相似文献   
66.
67.
68.
The most commonly discussed topic at the present time is the fluid flow in a channel having a porous area, as it is of practical importance for petroleum extraction, frequently isolated irrigation, coolant circulation, biofluid transportation in living organisms, and industrial cleaning systems. An investigation of heat transfer characteristics of unsteady magnetohydrodynamics oscillatory two-immiscible fluid flow of Casson fluid (CF) and ferrofluid (FF) in a long-infinite horizontal composite channel is performed analytically. The channel is divided into two regions. Region I is occupied by a porous region with CF, while Region II is a clear region filled with FF. The mathematical system of coupled partial differential equations is solved analytically considering the two-term periodic and nonperiodic functions. The influences of physical parameters such as CF parameter, porosity parameter, nanoparticles volume fraction, Hartmann number, periodic frequency parameter, oscillations amplitude, and pressure on momentum as well as heat transfer are presented through graphical illustrations (two-dimensional along with three-dimensional) and in tabular form using the MATHEMATICA program. Four different shaped nano-size ferroparticles are used in this study. The investigation of four different nanosized ferroparticles exhibits that the momentum transfer is higher when brick-shaped nanosized ferroparticles are added to the base fluid, water. It is also observed that thermal performance enhances in the case of brick-shaped nanosized ferroparticles compared to the blade, cylinder, and platelet-shaped nanosized ferroparticles. It is observed that the dispersion of brick-shaped nanosized ferroparticles is recommended in base fluid water for greater thermal performance through a horizontal channel.  相似文献   
69.
70.
To reduce flood risk in urban regions, it is important to optimize the performance of operational elements such as gates and pumps. This paper compares the performances of two approaches of multi-period and single-period simulation-optimization that are used to derive real-time control policies for operating urban drainage systems. The EPA storm water management model (SWMM), converting real-time rainfall data to surface runoff at network control points, i.e. pump stations, is linked to the particle swarm optimization (PSO) algorithm, evaluating the system operation performance measure (objective function) for different sets of control policies. A prototype network in a portion of the Seoul urban drainage system is used to investigate the efficiency of the proposed approaches. Results justify the high efficiency of multi-period optimization, leading to 32 and 29% average reductions in peak water level violations from a pre-defined permissible threshold at target points and the number of pump switches, respectively, in comparison with the online single-period optimization. The myopic policies derived by single-period optimization are not reliable, and in some cases, they even perform worse than ad-hoc policies applied by system operators based on their past experiences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号