首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   11篇
  国内免费   2篇
电工技术   1篇
综合类   1篇
化学工业   68篇
金属工艺   79篇
机械仪表   4篇
建筑科学   4篇
能源动力   12篇
轻工业   16篇
水利工程   2篇
无线电   26篇
一般工业技术   80篇
冶金工业   29篇
原子能技术   1篇
自动化技术   32篇
  2024年   1篇
  2023年   6篇
  2022年   11篇
  2021年   12篇
  2020年   7篇
  2019年   9篇
  2018年   21篇
  2017年   10篇
  2016年   8篇
  2015年   8篇
  2014年   12篇
  2013年   24篇
  2012年   13篇
  2011年   24篇
  2010年   13篇
  2009年   17篇
  2008年   11篇
  2007年   12篇
  2006年   13篇
  2005年   9篇
  2004年   10篇
  2003年   6篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1999年   4篇
  1998年   10篇
  1997年   12篇
  1996年   3篇
  1995年   10篇
  1994年   10篇
  1993年   4篇
  1992年   5篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1975年   3篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有355条查询结果,搜索用时 0 毫秒
11.
Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray’s versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are “passive” protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.  相似文献   
12.
Java-MaC: A Run-Time Assurance Approach for Java Programs   总被引:2,自引:1,他引:2  
We describe Java-MaC, a prototype implementation of the Monitoring and Checking (MaC) architecture for Java programs. The MaC architecture provides assurance that the target program is running correctly with respect to a formal requirements specification by monitoring and checking the execution of the target program at run-time. MaC bridges the gap between formal verification, which ensures the correctness of a design rather than an implementation, and testing, which does not provide formal guarantees about the correctness of the system.Use of formal requirement specifications in run-time monitoring and checking is the salient aspect of the MaC architecture. MaC is a lightweight formal method solution which works as a viable complement to the current heavyweight formal methods. In addition, analysis processes of the architecture including instrumentation of the target program, monitoring, and checking are performed fully automatically without human direction, which increases the accuracy of the analysis. Another important feature of the architecture is the clear separation between monitoring implementation-dependent low-level behaviors and checking high-level behaviors, which allows the reuse of a high-level requirement specification even when the target program implementation changes. Furthermore, this separation makes the architecture modular and allows the flexibility of incorporating third party tools into the architecture. The paper presents an overview of the MaC architecture and a prototype implementation Java-MaC.  相似文献   
13.
14.
A major source of loss in cadmium sulfide/cadmium telluride (CdS/CdTe) solar cells results from light absorbed in the CdS window layer, which is not converted to electrical current. This film can be made more transparent by oxygen incorporation during sputter deposition at ambient temperature. Prior to this work, this material has not produced high‐efficiency devices on tin oxide‐coated soda‐lime‐glass substrates used industrially. Numerous devices were fabricated over a variety of process conditions to produce an optimized device. Although the material does not show a consistent increase in band gap with oxygenation, absorption in this layer can be virtually eliminated over the relevant spectrum, leading to an increase in short‐circuit current. Meanwhile, fill factor is maintained, and open‐circuit voltage increases relative to baseline devices with sublimated CdS. The trend of device parameters with oxygenation and thickness is consistent with an increasing conduction band offset at the window/CdTe interface. Optimization considering both initial efficiency and stability resulted in a National Renewable Energy Laboratory verified 15.2%‐efficient cell on 3.2‐mm soda‐lime glass. This window material was shown to be compatible with SnO2‐based transparent conducting oxide and high resistance transparent coated substrates using in‐line compatible processes. Copyright © 2015 John Wiley & Sons, Ltd  相似文献   
15.
Spray parameters play an important role on the microstructure and properties of plasma-sprayed coatings. Parameters such as spray distance, plasma gas flow and current, raster speed, and spray angle all can be varied. In this paper, an integrated study to investigate the effects and influences of spray angle on properties of yttria-stabilized zirconia coatings was carried out with spray angles of 60°, 75°, and 90° (to the substrate surface). In situ coating property sensor based on beam curvature measurements was used to measure the evolving stress and elastic moduli of the resultant coatings and combined with other characterization tools for thermo-physical property and microstructure analysis, such as laser flash and scanning electron microscopy. The results indicate that the coating with 60° spray angle had the lowest thermal conductivity and more compliant structure. This study seeks to understand the mechanism for this effect and will provide important insight into parametric sensitivities on complex spray parts.  相似文献   
16.
The deposition rate plays an important role in determining the thickness, stress state, and physical properties of plasma-sprayed coatings. In this article, the effect of the deposition rate on the stress evolution during the deposition (named evolving stress) of yttria-stabilized zirconia coatings was systematically studied by varying the powder feed rate and the robot-scanning speed. The evolving stress during the deposition tends to increase with the increased deposition rate, and this tendency was less significant at a longer spray distance. In some cases, the powder feed rate had more significant influence on the evolving stress than the robot speed. This tendency can be associated with a deviation of a local deposition temperature at a place where sprayed particles are deposited from an average substrate temperature. At a further higher deposition rate, the evolving stress was relieved by introduction of macroscopic vertical cracks as well as horizontal branching cracks.  相似文献   
17.
Many human acid tolerant bacterial and fungal pathogens can be transmitted through the consumption of the contaminated fruit juices. We aim to formulate essential oil nanoemulsions (basil, black seed, turmeric, clove & cinnamon), determine their ability to clear contamination by food borne bacterial pathogens from fruit juices. The antibacterial activity of the optimised formulations was tested in the fruit juices against bacterial pathogens causing gastrointestinal tract infections. The minimum bactericidal concentration (MBC) of clove emulsions ranged from 15.6 to 25 μL mL−1. Cinnamon oil emulsion had an MBC ranging between 15 and 31 μL mL−1. At MBC, cinnamon oil emulsions caused a 6log10 decrease in viable counts by 8 h and maintained the sterility of fruit juices for 7 days at ambient temperature. Thus, clove and cinnamon microemulsions can be used as juice additives to control food borne bacterial pathogens and maintain the bacterial sterility of fruit juices.  相似文献   
18.
Next-generation military and civilian communication systems will require technologies capable of handling data/ audio, and video simultaneously while supporting multiple RF systems operating in several different frequency bands from the MHz to the GHz range [1]. RF microelectromechani-cal/nanoelectromechanical (MEMS/NEMS) devices, such as resonators and switches, are attractive to industry as they offer a means by which performance can be greatly improved for wireless applications while at the same time potentially reducing overall size and weight as well as manufacturing costs.  相似文献   
19.
This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30–110 °C).  相似文献   
20.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号