首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  国内免费   1篇
电工技术   3篇
化学工业   29篇
金属工艺   1篇
建筑科学   3篇
能源动力   1篇
轻工业   18篇
水利工程   3篇
无线电   3篇
一般工业技术   12篇
冶金工业   1篇
原子能技术   2篇
自动化技术   14篇
  2022年   4篇
  2021年   12篇
  2020年   6篇
  2019年   7篇
  2018年   7篇
  2017年   9篇
  2016年   5篇
  2014年   11篇
  2013年   11篇
  2012年   9篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
61.
Exceptionally simple and cost-effective solid-state method is reported for the synthesis of different mixed transition metal oxides (MTMOs) including FeCo2O4, MnCo2O4 and ZnCo2O4 with unique nanostructures. The morphological analysis show that MTMOs possess distinct nanostructures such as tetragonal, spherical nanoparticles and hexagonal nanosheets. Furthermore, these MTMOs showed excellent supercapacitive properties with specific capacitances of 660–1263 F/g at current density of 2 A/g. Asymmetric capacitor was fabricated with FeCo2O4 as positive and activated carbon as negative electrode which exhibits a specific capacitance of 88 F/g with energy density of 24 Wh/kg (1.1 mWh/cm3) and cycle life (93%) over 5000 cycles.  相似文献   
62.
The Journal of Supercomputing - Network function virtualization has facilitated network service development through the integration of network functions (NFs) such as firewalls, deep packet...  相似文献   
63.
Microsystem Technologies - Design and fabrication of an in-plane silicon Fabry–Perot temperature sensor for fiber-optic temperature sensing was reported in our previous work. To fabricate...  相似文献   
64.
65.
This research reports for the first time the surface coating of steel samples with commercial nanoparticles of TiO2. Aiming to improve the substrate corrosion behavior, a stable suspension containing TiO2‐P25 nanoparticles and polyvinyl alcohol in the water was prepared and the coating was applied on the surface of the substrate via dip‐coating. Heat treatment led to the formation of strong connection between the substrate and the coating film. Scanning electron microscopy and scanning probe microscopy were utilized to scrutinize the samples in terms of topography and microstructure. In addition, the samples corrosion behavior was investigated through Tafel polarization and impedance spectroscopy. The results showed that one‐step of sample dip‐coating in sol or heat treatment at 600°C cannot provide for desirable and appropriate physical circumstances in the thin film. The applied thin film showed the highest corrosion behavior improvement when the sample was coated with two or three films and the heat treatment was carried out at 400°C. In this respect, according to the Tafel curves, the applied coating efficiency was measured to be approximately 90%. The electrochemical impedance spectroscopy results indicated that the reference sample was single‐time constant and the coated sample was double‐time constant. Applying the coating increased impedance, reduced the capacitive element, and diminished the resistance area. All three mentioned factors contributed to the enhancement of corrosion behavior.  相似文献   
66.
Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tension reduction, impulsive emulsion formation and wettability alteration of porous media. The presence of dispersed nanoparticles in injected fluids would enhance the recovery process through their movement towards oil–water interface. This would cause the interfacial tension to be reduced. In this research, the effects of different types of nanoparticles and different nanoparticle concentrations on EOR processes were investigated. Different flooding experiments were investigated to reveal enhancing oil recovery mechanisms. The results showed that nanoparticles have the ability to reduce the IFT as well as contact angle, making the solid surface to more water wet. As nanoparticle concentration increases more trapped oil was produced mainly due to wettability alteration to water wet and IFT reduction. However, pore blockage was also observed due to adsorption of nanoparticles, a phenomenon which caused the injection pressure to increase. Nonetheless, such higher injection pressure could displace some trapped oil in the small pore channels out of the model. The investigated results gave a clear indication that the EOR potential of nanoparticle fluid is significant.  相似文献   
67.
Two experiments were designed to compare two symbolic rehearsal refresher interventions (imaginary practice, a hidden introspective process) and investigate the role of retentivity in skill retention. Retentivity is investigated as the ability to memorise and reproduce information and associations that were learned a short time ago. Both experiments comprised initial training (week 1), a symbolic rehearsal for the experimental group (week 2) and a retention assessment (week 3). In the first study, the experimental group received a symbolic rehearsal, while the control group received no rehearsal. In the second study, the experimental group received the same symbolic rehearsal used in study 1, enhanced with rehearsal tasks addressing human–computer interaction. The results showed that both symbolic rehearsal interventions were equally likely to mitigate skill decay. The retentivity showed medium to high correlations with skill retention in both studies, and the results suggest that subjects high in retentivity benefit more from a symbolic rehearsal refresher intervention.

Practitioner Summary: Skill decay becomes a problem in situations in which jobs require the correct mastery of non-routine situations. Two experimental studies with simulated process control tasks showed that symbolic rehearsal and retentivity can significantly mitigate skill decay and that subjects higher in retentivity benefit more from refresher interventions.  相似文献   

68.
In the suspension spray of nanoparticles, where the attempt is to reach nano-scaled uniform coatings, there is a vital demand to produce a controllable and non-pulsating spray. Effervescent atomizers, in which a gas is bubbled into the bulk of liquid through an aerator, have shown to be a technological alternative to the conventional atomizers when liquid atomization with various concentrations of nano-particles is required. Thus, understanding the behavior of gas and liquid flow through the nozzle is crucial to predict the condition of resultant spray. The two-phase flow inside an effervescent atomizer is numerically investigated. Using an incompressible Eulerian/Eulerian approach, the three-dimensional structure of two-phase flow inside an aerated-liquid injector is modeled. The behaviour of liquid film carrying nano-particles in the discharge passage is studied using different Gas to Liquid mass flow Ratios (GLR), ranging from 0.08% to 1.25%. These numerical results are compared with the experimental data available in literature. The effect of nano-sized solid particles concentration on the liquid film thickness at the exit of the atomizer is studied through the change in liquid bulk density and viscosity. The results show that the atomizing gas-to-liquid mass flow ratio (GLR) does play a key role on the flow behaviour inside the atomizer. At low GLRs of 0.15%, the thickness of the liquid film decreases rapidly and as GLR increases to 1.25% the liquid film thickness dependency on GLR reduces. The results also show that there is no significant effect of particle concentrations, varying within the range of Newtonian fluid, on the liquid film thickness. This feature makes effervescent atomizers a technology choice for controllable suspension thermal spray processes.  相似文献   
69.
The behaviors of three different catalyst systems, TiCl4/MgCl2, Cp2ZrCl2 and Cp2HfCl2, were investigated in ethylene/1,5‐hexadiene copolymerization. In the Fourier transform infrared spectra of the copolymers, cyclization and branching were detected for 1,5‐hexadiene insertion in the metallocene and Ziegler–Natta systems, respectively. DSC and viscometry analyses results revealed that copolymers with lower Tm and crystallinity and higher molecular weight were obtained with metallocene catalysts. The sequence length distribution of the copolymers was investigated by using the successive self‐nucleation and annealing thermal fractionation technique. The continuous melting endotherms obtained from successive self‐nucleation and annealing analysis were employed to get information about short‐chain branching, the branching dispersity index, comonomer content and lamella thickness in the synthesized copolymers. The results established that metallocene catalysts were much more effective than Ziegler–Natta catalysts in the incorporation of 1,5‐hexadiene in the polyethylene structure. Metallocene‐based copolymers had higher short‐chain branching and comonomer content, narrower branching dispersity index and thinner lamellae. Finally, the tendency of the employed catalysts in the 1,5‐hexadiene incorporation and cyclization reaction was explored via molecular simulation. The energy results demonstrated that, in comparison to Ziegler–Natta, metallocene catalysts have a much higher tendency to 1,5‐hexadiene incorporation and cyclization. © 2018 Society of Chemical Industry  相似文献   
70.
Correlation between the melt rheology and phase morphology of PP/PMMA/PS ternary blends during the shell formation process were studied in detail. In this PP-matrix ternary system, theoretical predictions in agreement with the direct SEM observations demonstrated the core-shell morphology with PMMA and PS phases as core and shell phases, respectively. Morphological observations revealed that the complete shell formation takes place at about 12 and 9 wt% of PS minor phase in ternary blends composed of low and high viscosity PMMAs, respectively. In terms of rheological properties, this was corresponding to the maximum value on the storage modulus versus PS content (shell thickness) curves. Encapsulation of high viscosity PMMA core particles at lower PS contents was related to the bigger particles and low interfacial area in this system compared to the system with low viscosity PMMA core particles. At high PS contents, single and multi-core structures were observed for composite droplets of ternary blends containing low and high viscosity PMMAs, respectively. The single core morphology of low viscosity PMMA particles was related to the coalescence of core particles after the coalescence of the corresponding shells, while high viscosity PMMA cores are less likely to coalescence, leading to creation of multi-core morphology in latter system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号