首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   11篇
电工技术   11篇
化学工业   109篇
金属工艺   3篇
机械仪表   3篇
建筑科学   4篇
能源动力   7篇
轻工业   45篇
无线电   3篇
一般工业技术   44篇
冶金工业   3篇
自动化技术   13篇
  2023年   3篇
  2022年   17篇
  2021年   13篇
  2020年   6篇
  2019年   4篇
  2018年   12篇
  2017年   8篇
  2016年   10篇
  2015年   5篇
  2014年   8篇
  2013年   19篇
  2012年   14篇
  2011年   18篇
  2010年   15篇
  2009年   16篇
  2008年   14篇
  2007年   14篇
  2006年   3篇
  2005年   8篇
  2004年   10篇
  2003年   8篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有245条查询结果,搜索用时 0 毫秒
61.
FucoPol, a fucose-containing extracellular polysaccharide (EPS) produced by bacterium Enterobacter A47 using glycerol as the carbon source, was employed as a coating material for magnetic particles (MPs), which were subsequently functionalized with an artificial ligand for the capture of antibodies. The performance of the modified MPs (MP–EPS-22/8) for antibody purification was investigated using direct magnetic separation alone or combined with an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and dextran. In direct magnetic capturing, and using pure protein solutions of human immunoglobulin G (hIgG) and bovine serum albumin (BSA), MP–EPS-22/8 bound 120 mg hIgG g−1 MPs, whereas with BSA only 10 ± 2 mg BSA g−1 MPs was achieved. The hybrid process combining both the ATPS and magnetic capturing leads to a good performance for partitioning of hIgG in the desired phase as well as recovery by the magnetic separator. The MPs were able to bind 145 mg of hIgG g−1 of particles which is quite high when compared with direct magnetic separation. The theoretical maximum capacity was calculated to be 410 ± 15 mg hIgG adsorbed g−1 MPs with a binding affinity constant of 4.3 × 104 M−1. In multiple extraction steps, the MPs bound 92% of loaded hIgG with a final purity level of 98.5%. The MPs could easily be regenerated, recycled and re-used for five cycles with only minor loss of capacity. FucoPol coating allowed both electrostatic and hydrophobic interactions with the antibody contributing to enhance the specificity for the targeted products.  相似文献   
62.
As a provider of our energy requirements, hydrogen seems to be one of most promising fuels, in particular when used to feed PEM fuel cells. When produced from a renewable source, it has got the potential to reduce the dependence on non-renewable fossil fuels and lower the amount of harmful emissions. Ethanol steam-reforming (ESR) reaction is an interesting option to obtain a H2- and CH4-rich stream with a low content of CO, combining the deep knowledge of the technology with the advantage of the biomass-derived feedstock. Thermodynamic analysis has indicated that the most interesting operating range to enhance the H2 production and minimize CO and coke formation requires low pressure, high temperature, and high water-to-ethanol molar ratio. On the other hand, despite its endothermic nature, ESR could be carried out at low temperature, to increase overall thermal efficiency, even if at these conditions the catalyst's deactivation, due to coking and sintering phenomena, is not negligible. The main objective of this study is to investigate on the activity, stability, and durability of bimetallic Pt–Ni and Pt–Co catalysts supported on CeO2 for low-temperature bio-ESR reaction. The catalysts have been prepared through different methods and with an optimized metal's content. They have also been characterized with various physico-chemical characterization tests, and the catalytic studies have been carried out in a lab-scale apparatus. While evaluating the effects on the catalysts' performances of preparation method, reaction temperature, space time, and water-to-ethanol molar ratio, the selected catalysts were found effective for the production of H2 by steam reforming at low temperature. In particular, the Pt/Ni/CeO2 catalyst shows a perfect agreement with equilibrium calculations yet at low contact times, although some carbon deposition occurs. Also the cobalt-based catalysts appear attractive. The relative rates of carbon growth versus gasification have been studied, and ascending water contents were used to study the effect of steam addition in the feed stream. An in-depth investigation of the reaction mechanism and the evaluation of the kinetic parameters will be crucial to complete the study of the proposed process.  相似文献   
63.
64.
A method based on gas chromatography/ tandem mass spectrometry was used to assess levels of 16 EU priority polycyclic aromatic hydrocarbons (PAHs) in 48 preserved food products in oil including foods such as vegetables in oil, fish in oil and oil-based sauces obtained from the Italian market. The benzo[a]pyrene concentrations ranged from <0.04 to 0.40 µg kg?1, and 72.9% of the samples showed detectable levels of this compound. The highest contamination level was observed for chrysene with three additional PAHs (benzo[a]anthracene, benzo[b]fluoranthene and benzo[c]fluorene) giving mean values higher than the mean value for benzo[a]pyrene. Chrysene was detected in all the samples at concentrations ranging from 0.07 to 1.80 µg kg?1 (median 0.31 µg kg?1). The contamination expressed as PAH4 (sum of benzo(a)pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene), for which the maximum tolerable limit has been set by Commission Regulation (EU) No. 835/2011, varied between 0.10 and 2.94 µg kg?1.  相似文献   
65.
Ten hydroalcoholic extracts of edible plants from the Calabria region (Italy) were evaluated for their in vitro antioxidant and antiradical properties and in vivo topical anti-inflammatory activity. All the extracts had radical-scavenging and/or antioxidant properties, the most active plants being hawkweed oxtongue and viper’s bugloss. The best free radical (DPPH·)-scavenging activity was found in hawkweed oxtongue and chicory leaves extracts (IC50 = 25 and 26 μg/ml, respectively). Hawkweed oxtongue, poppy and viper’s bugloss extracts showed the greatest inhibition of linoleic acid oxidation (IC50 = 3 μg/ml). Viper’s bugloss and hawkweed oxtongue extracts had the greatest antioxidant effect on bovine brain peroxidation (IC50 = 11 and 22 μg/ml). All the extracts also showed an anti-inflammatory effect: 300 μg/cm2 provoked oedema reductions ranging from 18% to 43%. Cress was the most active plant. Chicory leaves contained the highest amount of phenolics (190 mg/g) whilst Rush crimps contained the highest amount of flavonoids (32.9 mg/g), followed by hawkweed oxtongue (15.8 mg/g). Cress contained the highest number of sterols. Among them, γ-sitosterol (12.2%) and ergost-5-en-3-ol (3β) (4.5%) were found to be the major constituents. Moreover, three of the identified molecules (stigmasta-5,23-dien-3β-ol, stigmasta-5,24(28)-dien-3-ol (3β,22E) and 9,19-cyclolanost-24-en-3-ol (3β)) were found in this plant only.  相似文献   
66.
A single-stage sol-gel route was set to entrap yeast cells of Lipomyces starkeyi in a zirconia (ZrO(2)) matrix, and the remediation ability of the resulting catalyst toward a phenoxy acid herbicide, 4-chloro-2-methylphenoxyacetic acid (MCPA), was studied. It was found that the experimental procedure allowed a high dispersion of the microorganisms into the zirconia gel matrix; the ZrO(2) matrix exhibited a significant sorption capacity of the herbicide, and the entrapped cells showed a degradative activity toward MCPA. The combination of these effects leads to a nearly total removal efficiency (>97%) of the herbicide at 30 °C within 1 h incubation time from a solution containing a very high concentration of MCPA (200 mg L(-1)). On the basis of the experimental evidence, a removal mechanism was proposed involving in the first step the sorption of the herbicide molecules on the ZrO(2) matrix, followed by the microbial degradation operated by the entrapped yeasts, the metabolic activity of which appear enhanced under the microenvironmental conditions established within the zirconia matrix. Repeated batch tests of sorption/degradation of entrapped Lipomyces showed that the removal efficiency retained almost the same value of 97.3% after 3 batch tests, with only a subsequent slight decrease, probably due to the progressive saturation of the zirconia matrix.  相似文献   
67.
Chitin, chitosan and their complexes with β-glucan (chitin–glucan complex, CGC, and chitosan–glucan complex, ChGC) are value-added polysaccharides extracted from the cell-walls of many fungi. Commercial chitin and its deacetylated form, chitosan, are currently obtained from marine waste material, mostly animal sources (crustaceans and marine invertebrates), through harsh chemical procedures that have low reproducibility due to the variability of the composition of the sources and their seasonal character. These disadvantages are overcome by using fungi as sources of chitinous polymers. The extraction of chitin/chitosan from fungi cell-walls has the great advantage of yielding products with stable composition and properties, using simpler procedures, with the added benefit of also generating CGC and ChGC, two copolymers that combine the proven properties of chitin/chitosan with those of β-glucans. Over the last decades, fungal chitinous polymers have been the focus of extensive research that included optimization of the cultivation conditions of a wide range of species and the development of optimized extraction, purification and characterization techniques, as well as the demonstration of the biopolymers' biological properties, which include immunomodulatory, anticancer, antioxidant and antimicrobial activity. Given these properties, several attempts were made to develop applications for them in areas ranging from biomedicine and pharmaceuticals to food and agriculture. Despite their wide range of proven functional properties that include the ability to form different polymeric structures, as well as biological activity, fungal chitinous biopolymers are still underexplored. Nevertheless, these biopolymers hold great potential for development into valuable products or applications that are surely worth further investigation. © 2019 Society of Chemical Industry  相似文献   
68.
69.
This paper discusses voltage regulation on medium-voltage feeders with distributed generation (DG) using on-load tap changer (LTC) and line drop compensation (LDC). The analysis shows that LTC is robust against DG, whereas DG can affect the effectiveness of the voltage regulation provided by LDC. However, with proper coordination between DG and LDC, it is possible to ensure voltage regulation without unnecessarily restricting the integration of DG. It is shown that, while lowering the LTC setting can increase the DG integration limit, even higher increase can be obtained by activating the LDC feature, which is present in most LTCs, but often not used. LDC regulation is also compared with other alternatives such as using a DG unit with voltage control capability and installing a line voltage regulator.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号