Wireless sensor network (WSN) is comprised of tiny, cheap and power-efficient sensor nodes which effectively transmit data to the base station. The main challenge of WSN is the distance, energy and time delay. The power resource of the sensor node is a non-rechargeable battery. Here the greater the distance between the nodes, higher the energy consumption. For having the effective transmission of data with less energy, the cluster-head approach is used. It is well known that the time delay is directly proportional to the distance between the nodes and the base station. The cluster head is selected in such a way that it is spatially closer enough to the base station as well as the sensor nodes. So, the time delay can be substantially reduced. This, in turn, the transmission speed of the data packets can be increased. Firefly algorithm is developed for maximizing the energy efficiency of network and lifetime of nodes by selecting the cluster head optimally. In this paper firefly with cyclic randomization is proposed for selecting the best cluster head. The network performance is increased in this method when compared to the other conventional algorithms.
This letter presents the design and implementation of the largest reported bandwidth of a 60 GHz up/down converter with an integrated voltage controlled oscillator (VCO) in a low-cost 0.18 mum silicon-germanium process. The up/down conversion is achieved using the 2X sub-harmonic passive mixing with anti-parallel diode pairs. A 30 GHz cross-coupled VCO is designed, optimized and integrated with the sub-harmonic mixer through a cascode amplifier to meet the local oscillator power requirements. The fully integrated chip takes only 1.5 mm2 of silicon die area and consumes only 40 mW of dc power for a measured conversion loss of 12 dB at 61.5 GHz. The integrated up/down converter is measured to have greater than 9 GHz double-sided 3-dB RF bandwidth suitable for wideband high data-rate WPAN transceiver requirements. The VCO and VCO-amplifier test structures are separately fabricated and measured to have a phase noise as low as -105 dBc/Hz at 1 MHz offset with a tuning range of 2.3 GHz. 相似文献
The hybrid wireless-optical broadband-access network (WOBAN) is a promising architecture for future access networks. Recently, the wireless part of WOBAN has been gaining increasing attention, and early versions are being deployed as municipal access solutions to eliminate the wired drop to every wireless router at customer premises. This architecture saves on network deployment cost because the fiber need not penetrate each end-user, and it extends the reach of emerging optical-access solutions, such as passive optical networks. This paper first presents an architecture and a vision for the WOBAN and articulates why the combination of wireless and optical presents a compelling solution that optimizes the best of both worlds. While this discussion briefly touches upon the business drivers, the main arguments are based on technical and deployment considerations. Consequently, the rest of this paper reviews a variety of relevant research challenges, namely, network setup, network connectivity, and fault-tolerant behavior of the WOBAN. In the network setup, we review the design of a WOBAN where the back end is a wired optical network, the front end is managed by a wireless connectivity, and, in between, the tail ends of the optical part [known as optical network unit (ONU)] communicate directly with wireless base stations (known as ldquogateway routersrdquo). We outline algorithms to optimize the placement of ONUs in a WOBAN and report on a survey that we conducted on the distribution and types of wireless routers in the Wildhorse residential neighborhood of North Davis, CA. Then, we examine the WOBAN's routing properties (network connectivity), discuss the pros and cons of various routing algorithms, and summarize the idea behind fault-tolerant design of such hybrid networks. 相似文献
In this paper, we present a time domain combined field integral equation formulation (TD‐CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space‐time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation. 相似文献
The question of providing throughput guarantees through distributed scheduling, which has remained an open problem for some time, is addressed in this paper. It is shown that a simple distributed scheduling strategy, maximal scheduling, attains a guaranteed fraction of the maximum throughput region in arbitrary wireless networks. The guaranteed fraction depends on the ldquointerference degreerdquo of the network, which is the maximum number of transmitter-receiver pairs that interfere with any given transmitter-receiver pair in the network and do not interfere with each other. Depending on the nature of communication, the transmission powers and the propagation models, the guaranteed fraction can be lower-bounded by the maximum link degrees in the underlying topology, or even by constants that are independent of the topology. The guarantees are tight in that they cannot be improved any further with maximal scheduling. The results can be generalized to end-to-end multihop sessions. Finally, enhancements to maximal scheduling that can guarantee fairness of rate allocation among different sessions, are discussed. 相似文献
This paper describes the properties of a multiplexer based variable length ring oscillator and the effects of using it as a voltage controlled oscillator (VCO) in a phase locked loop (PLL) based system. The application of the proposed VCO in a PLL used as an FM demodulator or as a frequency synthesizer has been examined and it has been shown that the length control facility of the VCO could be used for improving the performances of those systems. Hardware experimental results confirm the predictions regarding the performance enhancement. 相似文献
Cognitive radio (CR) technology enables opportunistic exploration of unused licensed channels. By giving secondary users (SUs) the capability to utilize the licensed channels (LCs) when there are no primary users (PUs) present, the CR increases spectrum utilization and ameliorates the problem of spectrum shortage. However, the absence of a central controller in CR ad hoc network (CRAHN) introduces many challenges in the efficient selection of appropriate data and backup channels. Maintenance of the backup channels as well as managing the sudden appearance of PUs are critical issues for effective operation of CR. In this paper, a prioritized medium access control protocol for CRAHN, PCR-MAC, is developed which opportunistically selects the optimal data and backup channels from a list of available channels. We also design a scheme for reliable switching of a SU from the data channel to the backup channel and vice-versa. Thus, PCR-MAC increases network throughput and decreases SUs’ blocking rate. We also develop a Markov chain-based performance analysis model for the proposed PCR-MAC protocol. Our simulations, carried out in \(NS-3\), show that the proposed PCR-MAC outperforms other state-of-the-art opportunistic medium access control protocols for CRAHNs. 相似文献
Wireless Personal Communications - With the advent of sensor technologies, cloud applications are able to acquire sensed data from remotely located sensors which are geographically distributed.... 相似文献
This paper introduces a new mutual coupling compensation method based on the minimum norm solution to an underdetermined system of equations. The crucial advantage over previous techniques is that the formulation is valid independent of the type of antenna element and provides good results in situations where signal strengths vary considerably. In using the matrix pencil algorithm to estimate the directions of arrival, the examples show that the proposed method results in significantly lower bias than the traditional open circuit method. The analysis of mutual coupling is also applied in the context of a code division multiple access communication system. 相似文献
The emergence of Dirac semimetals has stimulated growing attention, owing to the considerable technological potential arising from their peculiar exotic quantum transport related to their nontrivial topological states. Especially, materials showing type-II Dirac fermions afford novel device functionalities enabled by anisotropic optical and magnetotransport properties. Nevertheless, real technological implementation has remained elusive so far. Definitely, in most Dirac semimetals, the Dirac point lies deep below the Fermi level, limiting technological exploitation. Here, it is shown that kitkaite (NiTeSe) represents an ideal platform for type-II Dirac fermiology based on spin-resolved angle-resolved photoemission spectroscopy and density functional theory. Precisely, the existence of type-II bulk Dirac fermions is discovered in NiTeSe around the Fermi level and the presence of topological surface states with strong (≈50%) spin polarization. By means of surface-science experiments in near-ambient pressure conditions, chemical inertness towards ambient gases (oxygen and water) is also demonstrated. Correspondingly, NiTeSe-based devices without encapsulation afford long-term efficiency, as demonstrated by the direct implementation of a NiTeSe-based microwave receiver with a room-temperature photocurrent of 2.8 µA at 28 GHz and more than two orders of magnitude linear dynamic range. The findings are essential to bringing to fruition type-II Dirac fermions in photonics, spintronics, and optoelectronics. 相似文献