In this article, we study the frictional losses in magnetohydrodynamic (MHD) microflows by analyzing the Poiseuille number defined through the Darcy–Weisbach friction factor. We consider two-dimensional fully developed flow models characteristic of MHD micropumps including the Hartmann braking effect and the existence of slippage. Unlike the purely hydrodynamic case, in MHD flows the Poiseuille number depends not only on the aspect ratio but also on the physical properties of the fluid and the externally applied magnetic field. Three different combinations of boundary conditions (slip and no-slip) are investigated. Calculations show that the Poiseuille number is considerably reduced as the dimensionless slip length is increased, while it increases as Hartmann number does. The obtained results are consistent with previous models and are helpful for the design of magnetohydrodynamic microflow devices.
Software Quality Journal - The model-driven engineering (MDE) paradigm promotes the use of conceptual models in information systems (IS) engineering and research. As engineering products,... 相似文献
The topic of this paper is the identification of an accurate model for magneto-rheological (MR) dampers. A semi-active MR-damper is a dynamic system, where the inputs are the elongation velocity and the command current; the current is the control input which modulates at high-bandwidth the damping characteristic through the variation of a magnetic field. The output is the force delivered by the damper. Among the broad set of applications where MR-dampers can be used, the results proposed in this work refer to MR-dampers for the control of vehicle dynamics.MR-damper are highly non-linear systems, and their accurate modeling is a non-trivial task. MR-dampers can be modeled using two different model classes: semi-physical models and black-box models. Both approaches are considered in this work.The purpose of this brief paper is to make a concise but complete presentation and discussion of a non-trivial system identification problem. The problem considered herein is particularly interesting from the system identification point of view: from one side, the MR-damper is a very attractive actuator, which is likely to become the key device for many dynamics and vibration control systems in the near future; on the other side, it is an example of an application problem where the accurate modeling of the actuation device is one of the most crucial part of the whole control design problem. 相似文献
The Chilean wine industry faces a growing challenge in terms of the increasing global competition, along with other difficult challenges such as exchange rate fluctuations, higher labor and energy costs and climate change. In light of this, the present paper proposes a new approach to increase competitiveness of Chilean wineries based on findings of the current performance management systems practice in the industry. The methodology encompasses a thorough survey of the industry's management systems, with special emphasis on the balanced scorecard (BSC) and its derivatives. The study finds, upon examining the results, that the ISO 9001 norm and the national code of sustainability of the Chilean wine industry are the two most commonly used and that only 14% of the companies have designed a BSC of some type, offering a unique opportunity to introduce this novel approach focusing on performance and sustainability, incorporating the spatial and temporal dimensions of the industry today. 相似文献
Hydrophilic polyanionic conjugated polyrotaxanes are readily synthesized in water by Suzuki coupling, but their high polarity and ionic nature limit the potential applications of these materials. Here, we demonstrate three methods for transforming these polar polyelectrolytes into nonpolar lipophilic insulated molecular wires. A water‐soluble polyfluorene‐alt‐biphenylene β‐cyclodextrin (CD) polyrotaxane was converted into nonpolar derivatives by methylation of the carboxylic acid groups with diazomethane and conversion of the hydroxyl groups of the CDs to benzyl ethers, trihexylsilyl ethers, benzoyl esters, and butanoate esters to yield polyrotaxanes that are soluble in organic solvents such as chloroform and cyclohexane. Elemental analysis, NMR spectroscopy, and gel permeation chromatography (GPC) data support the proposed structures of the organic‐soluble polyrotaxanes. The extents of reaction of the polyrotaxane CD hydroxyl groups were 55% for trihexylsilyl chloride/imidazole; 81% for benzyl chloride/sodium hydride; 72% for benzoyl chloride/pyridine/4‐dimethylaminopyridine; and 98% butanoic anhydride/pyridine/4‐dimethylaminopyridine. Alkylation, silylation, and esterification increase the bulk of the encapsulating sheath, preventing interstrand aggregation, increasing the photoluminescence efficiency in the solid state and simplifying the time‐resolved fluorescence decay. The organic‐soluble polyrotaxanes were processed into polymer light‐emitting diodes (PLEDs) from solution in nonpolar organic solvents, thereby excluding ionic impurities from the active layer. 相似文献
It is shown that a relief is generated when spatial distributions of infrared light (lambda = 10.6 microm) are recorded on albumen films. The relief can be applied to the fabrication of microelements, such as diffraction gratings and microlenses. Examples are shown. 相似文献