首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   13篇
  国内免费   1篇
综合类   2篇
化学工业   18篇
机械仪表   2篇
建筑科学   1篇
矿业工程   1篇
能源动力   8篇
轻工业   16篇
石油天然气   11篇
无线电   15篇
一般工业技术   16篇
冶金工业   1篇
原子能技术   3篇
自动化技术   5篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   6篇
  2016年   14篇
  2015年   3篇
  2014年   2篇
  2013年   13篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  1991年   1篇
排序方式: 共有99条查询结果,搜索用时 31 毫秒
81.
Food Science and Biotechnology - The aim of the present study was to evaluate the effects of sodium alginate (SA) coatings containing Mentha spicata essential oil (MSO; 0.5 and 1%) and cellulose...  相似文献   
82.
This paper deals with the numerical solution of system of fractional integro-differential equations. In this work, we approximate the unknown functions based on the hybrid Bernstein Block–Pulse functions, in conjunction with the collocation method. We introduce the Riemann–Liouville fractional integral operator for the hybrid Bernstein Block–Pulse functions. This operator will be approximated by the Gauss quadrature formula with respect to the Legendre weight function and then it is utilized to reduce the solution of the fractional integro-differential equations to a system of algebraic equations. This system can be easily solved by any usual numerical methods. The existence and uniqueness of the solution have been discussed. Moreover, the convergence analysis of this algorithm will be shown by preparing some theorems. Numerical experiments are presented to show the superiority and efficiency of proposed method in comparison with some other well-known methods.  相似文献   
83.
84.
Real‐time fast simulation of lead‐acid battery (LAB) plays an important role in monitoring, control, optimization, and many other engineering fields. Hence, any improvement toward a reduction in computational time of LAB simulation while maintaining the accuracy of results is of practical interest. Reduced‐order modeling (ROM) is one of the promising tools, which is computationally cost‐effective along with producing accurate results. In this study, ROM is employed in a transient one‐dimensional simulation of LABs within discharge to investigate the variation of battery parameters, eg, cell voltage, acid concentration, and state of charge (SoC). Accordingly, three reduced‐order models are implemented, namely, proper orthogonal decomposition (POD), cluster analysis (CA), and orthogonal cluster analysis (OCA), wherein the latter one is a new hybrid model of POD and CA methods proposed in the present work. The results reveal that ROM of LAB reduces the simulation time significantly (speed‐up factor about 7‐12) and provide good consistency comparing with previous experimental and numerical studies (less than 1% relative error for cell voltage, acid concentration, and SoC). In addition, the results indicate that the new hybrid method inherits the advantages of both POD and CA methods, ie, enhances the speed of POD method by 8% to 24% and accuracy of CA method by 17% to 65%.  相似文献   
85.
86.
87.
Chemo-mechanical-grinding (CMG) is a hybrid process which integrates chemical reaction and mechanical grinding between abrasives and workpiece into one process. It has been successfully applied into manufacturing process of silicon wafers where both geometric accuracy and surface quality are required. This paper aims to study the potential of CMG process in manufacturing process of single crystal sapphire wafers. The basic material removal mechanism in terms of chemical effect and mechanical effect in CMG process has been analysed based on experiment results of two different kinds of CMG wheels. The experiment results suggest that chromium oxide (Cr2O3) performs better than silica (SiO2) in both material removal rate (MRR) and surface quality. It also reveals that, no matter under dry condition or wet condition, CMG is with potential to achieve excellent surface quality and impressive geometric accuracy of sapphire wafer. Meanwhile, test result by Raman spectrum shows that, by using Cr2O3 as abrasive, the sub-surface damage of sapphire wafer is hardly to be detected. Transmission electron microscopy (TEM) tells that the sub-surface damage, about less than 50 nm, might remain on the top surface if chemical effect is not sufficient enough to meet the balance with mechanical effect in CMG process.  相似文献   
88.
The combination of chemo‐ and immunotherapy represents one promising strategy to overcome the existent challenges in the present‐day anticancer therapy. Here, spermine‐modified acetalated dextran nanoparticles (Sp‐AcDEX NPs), co‐loaded with the non‐genotoxic molecule Nutlin‐3a (Nut3a), and the cytokine granulocyte–macrophage colony‐stimulating factor (GM‐CSF), are developed to induce cancer cell death and create a specific antitumor immune response. These polymeric NPs release Nut3a in a pH dependent fashion and induce endosomal escape. Due to Nut3a, the loaded NPs exert specific toxicity toward wild‐type p53 cancer cells while avoiding toxicity in immune cells. Furthermore, the NPs show intrinsic immune adjuvancy on monocyte derived‐dendritic cells, upregulating the expression of cell surface CD83 and CD86 costimulatory markers. Finally, it is examined that by inducing MCF‐7 breast cancer cell death and acting as immune adjuvants, the NPs can downregulate the expression of IL‐10 and upregulate IL‐1β, leading to proliferation of CD3+ and cytotoxic CD8+ T cells. Overall, the study suggests that Sp‐AcDEX NPs loaded with Nut3a and GM‐CSF is a promising system for chemo‐immunotherapy, capable of inducing tumor cell death and stimulating immune response.  相似文献   
89.
A simple, rapid and green method for fabrication of nanoporous metal (Ag and Pd) foams using electrochemically deposited nanoporous copper foam is presented. Ideally direct electrochemical formation of Ag and Pd foam structures without any additive reagent does not lead to a desired result; however, indirect fabrication starting from electrochemically fabricated Cu foam seems promising. Highly porous copper foam is fabricated electrochemically at a copper sheet and in turn serves as a hard template and a redox inducer for the deposition of Ag or Pd. The redox induced replacement of copper foam with Ag or Pd is done via simple immersion of as-fabricated nanoporous copper foam in cation aqueous solutions of Ag or Pd. The surface morphology of the as-fabricated foam is characterized by scanning electron microscopy (SEM), EDX and X-ray diffraction. The hydrogen evolution reaction is investigated as an example to demonstrate the electrocatalytic ability of as-fabricated foams.  相似文献   
90.
In this study the dependence of the impeller speed on the particle size variation was investigated on the quartz particles using laboratory mechanical flotation cell. Maximum recovery was obtained at 1100 rpm. For either more quiescent (impeller speed <900 rpm) or more turbulent (impeller speed >1300 rpm) conditions, flotation recovery decreased steadily. Furthermore, amount of collision probabilities is calculated using various equations. According to this study, maximum collision probability was obtained around 48.35% with impeller speed of 1100 rpm, air flow rate of 15 l/h and particle size of 545 μm and minimum collision probability was obtained around 2.43% with impeller speed of 700 rpm, air flow rate of 15 l/h and particle size of 256 μm. Maximum attachment probability was obtained around 44.16% with impeller speed of 1300 rpm, air flow rate of 75 l/h and particle size of 256 μm. With using some frothers such as poly propylene glycol, MIBC and pine oil, probability of collision increased, respectively. Maximum collision probability was obtained around 65.46% with poly propylene glycol dosage of 75 g/t and particle size of 545 μm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号