首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   785篇
  免费   44篇
  国内免费   1篇
电工技术   9篇
综合类   2篇
化学工业   410篇
金属工艺   6篇
机械仪表   15篇
建筑科学   26篇
能源动力   26篇
轻工业   103篇
水利工程   6篇
石油天然气   2篇
无线电   35篇
一般工业技术   85篇
冶金工业   29篇
自动化技术   76篇
  2023年   15篇
  2022年   86篇
  2021年   99篇
  2020年   18篇
  2019年   21篇
  2018年   25篇
  2017年   24篇
  2016年   39篇
  2015年   40篇
  2014年   35篇
  2013年   53篇
  2012年   44篇
  2011年   56篇
  2010年   35篇
  2009年   42篇
  2008年   34篇
  2007年   33篇
  2006年   20篇
  2005年   22篇
  2004年   18篇
  2003年   15篇
  2002年   11篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有830条查询结果,搜索用时 0 毫秒
101.
102.
In this experimental work, methane steam reforming (MSR) reaction is performed in a dense Pd-Ag membrane reactor and the influence of pressure on methane conversion, COx-free hydrogen recovery and COx-free hydrogen production is investigated. The reaction is conducted at 450 °C by supplying nitrogen as a sweep gas in co-current flow configuration with respect to the reactants. Three experimental campaigns are realized in the MR packed with Ni-ZrO catalyst, which showed better performances than Ni-Al2O3 used in a previous paper dealing with the same MR system. The first one is directed to keep constant the total pressure in both retentate and permeate sides of the membrane reactor. In the second case study, the total retentate pressure is kept constant at 9.0 bar, while the total permeate pressure is varied between 5.0 and 9.0 bar. As the best result of this work, at 450 °C and 4.0 bar of total pressure difference between retentate and permeate sides, around 65% methane conversion and 1.2 l/h of COx-free hydrogen are reached, further recovering 80% COx-free hydrogen over the total hydrogen produced during the reaction. Moreover, a study on the influence of hydrogen-rich gas mixtures on the hydrogen permeation through the Pd-Ag membrane is also performed and discussed.  相似文献   
103.
We report on the in vitro response of human gingival fibroblasts (HGF-1 cell line) to various thin films of titanium dioxide (TiO2) deposited on titanium (Ti) substrates by low pressure metal-organic chemical vapor deposition (LP-MOCVD). The aim was to study the influence of film structural parameters on the cell behavior comparatively with a native-oxide covered titanium specimen, this objective being topical and interesting for materials applications in implantology. HGF-1 cells were cultured on three LP-MOCVD prepared thin films of TiO2 differentiated by their thickness, roughness, transversal morphology, allotropic composition and wettability, and on a native-oxide covered Ti substrate. Besides traditional tests of cell viability and morphology, the biocompatibility of these materials was evaluated by fibronectin immunostaining, assessment of cell proliferation status and the zymographic evaluation of gelatinolytic activities specific to matrix metalloproteinases secreted by cells grown in contact with studied specimens. The analyzed surfaces proved to influence fibronectin fibril assembly, cell proliferation and capacity to degrade extracellular matrix without considerably affecting cell viability and morphology. The MOCVD of TiO2 proved effective in positively modifying titanium surface for medical applications. Surface properties playing a crucial role for cell behavior were the wettability and, secondarily, the roughness, HGF-1 cells preferring a moderately rough and wettable TiO2 coating.  相似文献   
104.
105.
Ultrasonic tissue characterization has become an area of intensive research. This procedure generally relies on the analysis of the unprocessed echo signal. Because the ultrasound echo is degraded by the non-ideal system point spread function, a deconvolution step could be employed to provide an estimate of the tissue response that could then be exploited for a more accurate characterization. In medical ultrasound, deconvolution is commonly used to increase diagnostic reliability of ultrasound images by improving their contrast and resolution. Most successful algorithms address deconvolution in a maximum a posteriori estimation framework; this typically leads to the solution of l(2)-norm or (1)-norm constrained optimization problems, depending on the choice of the prior distribution. Although these techniques are sufficient to obtain relevant image visual quality improvements, the obtained reflectivity estimates are, however, not appropriate for classification purposes. In this context, we introduce in this paper a maximum a posteriori deconvolution framework expressly derived to improve tissue characterization. The algorithm overcomes limitations associated with standard techniques by using a nonstandard prior model for the tissue response. We present an evaluation of the algorithm performance using both computer simulations and tissue-mimicking phantoms. These studies reveal increased accuracy in the characterization of media with different properties. A comparison with state-of-the-art Wiener and l(1)-norm deconvolution techniques attests to the superiority of the proposed algorithm.  相似文献   
106.
Water molecular dynamics during bread staling by Nuclear Magnetic Resonance   总被引:2,自引:0,他引:2  
Bread staling is a complex phenomenon that originates from multiple physico-chemical events (amylopectin retrogradation, water loss and redistribution) that are not yet completely elucidated. Molecular properties of white bread loaves were characterized by multiple proton Nuclear Magnetic Resonance (NMR) techniques (proton FID, T2 and T1 relaxation time) over 14 days of storage. Changes at a molecular level (faster decay of proton FIDs and shifting of proton T2 relaxation times distributions towards shorter times), indicating a proton mobility reduction of the bread matrix, were observed during storage. Multiple 1H T2 populations were observed and tentatively associated to water-gluten and water-starch domains. Proton T1 of bread was for the first time measured at variable frequencies (Fast Field Cycling NMR) and found to be strongly dependent upon frequency and to decrease in bread during storage, especially at frequencies ≤ 0.2 MHz. An additional proton T1 population, relaxing at 2 ms, was detected at 0.52 MHz only at early storage times and tentatively attributed to a water-gluten domain that lost mobility during storage.  相似文献   
107.
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence that includes FP-RMS, harboring the fusion oncoprotein PAX3/7-FOXO1 and FN-RMS, often mutant in the RAS pathway. Risk stratifications of RMS patients determine different prognostic groups and related therapeutic treatment. Current multimodal therapeutic strategies involve surgery, chemotherapy (CHT) and radiotherapy (RT), but despite the deeper knowledge of response mechanisms underpinning CHT treatment and the technological improvements that characterize RT, local failures and recurrence frequently occur. This review sums up the RMS classification and the management of RMS patients, with special attention to RT treatment and possible radiosensitizing strategies for RMS tumors. Indeed, RMS radioresistance is a clinical problem and further studies aimed at dissecting radioresistant molecular mechanisms are needed to identify specific targets to hit, thus improving RT-induced cytotoxicity.  相似文献   
108.
We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system.  相似文献   
109.
The intense use of tellurium (Te) in industrial applications, along with the improper disposal of Te-derivatives, is causing their accumulation in the environment, where oxyanion tellurite (TeO32) is the most soluble, bioavailable, and toxic Te-species. On the other hand, tellurium is a rare metalloid element whose natural supply will end shortly with possible economic and technological effects. Thus, Te-containing waste represents the source from which Te should be recycled and recovered. Among the explored strategies, the microbial TeO32 biotransformation into less toxic Te-species is the most appropriate concerning the circular economy. Actinomycetes are ideal candidates in environmental biotechnology. However, their exploration in TeO32− biotransformation is scarce due to limited knowledge regarding oxyanion microbial processing. Here, this gap was filled by investigating the cell tolerance, adaptation, and response to TeO32− of a Micromonospora strain isolated from a metal(loid)-rich environment. To this aim, an integrated biological, physical-chemical, and statistical approach combining physiological and biochemical assays with confocal or scanning electron (SEM) microscopy and Fourier-transform infrared spectroscopy in attenuated total reflectance mode (ATR-FTIR) was designed. Micromonospora cells exposed to TeO32− under different physiological states revealed a series of striking cell responses, such as cell morphology changes, extracellular polymeric substance production, cell membrane damages and modifications, oxidative stress burst, protein aggregation and phosphorylation, and superoxide dismutase induction. These results highlight this Micromonospora strain as an asset for biotechnological purposes.  相似文献   
110.
Neo-adjuvant therapy (NAT) is increasingly used in the clinic for the treatment of breast cancer (BC). Pathological response to NAT has been associated with improved patients’ survival; however, the current techniques employed for assessing the tumor response have significant limitations. Small EVs (sEVs)-encapsulated miRNAs have emerged as promising new biomarkers for diagnosis and prediction. Therefore, our study aims to explore the predictive value of these miRNAs for the pathological response to NAT in BC. By employing bioinformatic tools, we selected a set of miRNAs and evaluated their expression in plasma sEVs and BC biopsies. Twelve miRNAs were identified in sEVs, of which, miR-21-5p, 221-3p, 146a-5p and 26a-5p were significantly associated with the Miller–Payne (MP) pathological response to NAT. Moreover, miR-21-5p, 146a-5p, 26a-5p and miR-24-3p were independent as predictors of MP response to NAT. However, the expression of these miRNAs showed no correlation between sEVs and tissue samples, indicating that the mechanisms of miRNA sorting into sEVs still needs to be elucidated. Functional analysis of miRNA target genes and drug interactions revealed that candidate miRNAs and their targets, can be regulated by different NAT regimens. This evidence supports their role in governing the patients’ therapy response and highlights their potential use as prediction biomarkers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号