首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   30篇
电工技术   3篇
综合类   3篇
化学工业   126篇
金属工艺   3篇
机械仪表   5篇
建筑科学   3篇
能源动力   27篇
轻工业   68篇
水利工程   4篇
石油天然气   3篇
无线电   12篇
一般工业技术   33篇
冶金工业   4篇
自动化技术   52篇
  2024年   2篇
  2023年   6篇
  2022年   23篇
  2021年   31篇
  2020年   26篇
  2019年   30篇
  2018年   21篇
  2017年   31篇
  2016年   19篇
  2015年   14篇
  2014年   21篇
  2013年   36篇
  2012年   26篇
  2011年   27篇
  2010年   5篇
  2009年   5篇
  2008年   9篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1995年   1篇
排序方式: 共有346条查询结果,搜索用时 62 毫秒
41.
42.
43.
Food Science and Biotechnology - In submerged-liquid fermentation, seven key parameters were assessed using one-factor-at-a-time to obtain the highest GABA yield using an industrial soy sauce koji...  相似文献   
44.
45.
Additives such as fillers, cross‐linkers, and plasticizers have become increasingly important in the polymer nanocomposite production field, especially for enhancing the structural morphology, functional behavior, and final performance of nanocomposites in broad applications. The current work is an overview of the effects of additive substances such as fillers, cross‐linkers, and plasticizers in the polymer electrolyte membrane composites applied to fuel cells. A comparative review is conducted by categorizing fillers into several types, and the most popular cross‐linkers and plasticizers used in fuel cell membranes are included in this review. The highlighted properties include the proton conductivity, permeability, mechanical properties, thermal properties, crystallinity, and structure of additive‐modified nanocomposites. Furthermore, the challenges and future prospects in the additive field are discussed in Section 5.0. This review can provide a reference for researchers seeking specific substances that can be used to enhance nanocomposite properties, especially in membrane fuel cell applications.  相似文献   
46.
Direct ethanol fuel cells (DEFCs) emerge as the new research energy field since fast production of electricity, high efficiency conversion, and simple fabrication process. The production cost, conductivity properties, and ethanol permeability of membrane were the main problem that limited the DEFC performance and commercialization. In this study, a low cost, good ionic conductivity and low ethanol permeability of an anion exchange membrane based on incorporation KOH‐doped quaternized poly(vinyl alcohol) (QPVA) membrane (designed as QPVA/KOH) is synthesized and cross‐linked with glutaraldehyde solution. The membrane is expected to cut the production cost and enhance the performance. In this work, an optimum of alkali‐doped concentration has influence the membrane performance. The membrane has reveal high chemical stability even doped with 8‐M KOH solution in 100°C. The morphology of membranes remained unbreakable and achieved high range of ionic conductivity (~10?2 S cm?1). The membranes present maximum ionic conductivity 1.29 × 10?2 S cm?1 at 30°C and 3.07 × 10?2 S cm?1 at 70°C. The ethanol permeability of membrane is lower compared with the commercial membranes. Power density of alkaline DEFCs with platinum‐based catalyst by using cross‐linked QPVA/KOH membrane is 5.88 mW cm?2, which is higher than commercial membranes at 30°C temperature. At 70°C, power density has increased up to 11.28 mW cm?2 and significantly increased up to 22.82 mW cm?2 via the nonplatinum‐based catalyst. Moreover, according to the durability test, the performance of passive alkaline DEFC by using cross‐linked QPVA/KOH membrane has maintained at 36.2% level. With such efficiency, the stack current density has been able to stay above 120 mA cm?2 for over 1000 hours, at 70°C.  相似文献   
47.
Sugarcane bagasse (SB) is one of the most abundant food wastes. In this research, SB was incorporated into the development of noodles at three different ratios, i.e. 5%, 10% and 15%. Total dietary fibre of noodles significantly increased from 3.39% (control noodles; – without SB) to 13.85% with 15% SB incorporation. All SB incorporated noodles (SBNs) were qualified to be labelled as ‘High in dietary fibre’. The 15% SBN had the highest fibre content and lowest dialyzable glucose, but the organoleptic properties were the lowest. Due to that, 5% SBN was deemed to be the most suitable ratio for noodles incorporation, as it had the closest value towards the commercial noodles in terms of colour, texture, fibre content and dialyzable glucose concentration of noodles samples. In terms of sensory evaluation, the 5% SBN had the highest overall acceptability, and the ratio was suitable for noodles development.  相似文献   
48.
Wastes from agricultural industry are often disposed. Nevertheless, these wastes contain nutraceuticals and functional compounds. Xylooligosaccharide (XOS) was extracted from two sugarcane wastes (SW); rind (SR) and pith (SP), and the prebiotic properties of both XOS were examined. SR and SP had different mixture of XOS and were resistant towards α-amylase and gastric juice digestion in vitro. Although the growth of Lactobacillus casei Shirota (LcS) and Bifidobacterium animalis subsp. Lactis ATCC® 700541™ increased significantly in both XOS after 48 h of incubation, XOS from SR showed better enrichment of probiotics growth. Both XOS were found to be more fermentable by LcS and acetic acid was the predominant end product of the fermentation. Since XOS composition was different between SR and SP and such difference can affect their prebiotic properties, it is important to choose the appropriate parts of SW to extract XOS with high fermentable properties and obtain the best synbiotics combination.  相似文献   
49.
Consumption of methanol and ethanol as a fuel in the passive direct fuel cells technologies is suitable and more useful for the portable application compared with hydrogen as a preliminary fuel due to the ease of management, including design of cell, transportation, and storage. However, the cost production of commercial membrane is still far from the acceptable commercialization stage. Based to our previous works, the low cost of cross‐linked sodium alginate (SA) polymer electrolyte bio‐membrane shown the virtuous chemical, mechanical, and thermal characterization as polymer electrolyte membrane in the direct methanol fuel cells (DMFCs). This study will further the investigation of cross‐linked SA polymer electrolyte bio‐membrane performance in the passive DMFCs and the passive direct ethanol fuel cells (DEFCs). The experimental study investigates the influence of the membrane thickness, loading of catalysts, temperature, type of fuel, and fuel concentration in order to achieve the optimal working operation performances. The passive DMFCs is improved from 1.45 up to 13.5 mW cm?2 for the maximum peak of power density, which is obtained by using 0.16 mm as an optimum thick of SA bio‐membrane that shown the highest selectivity 6.31 104 S s cm?3, 4 mg cm?2 of Pt‐Ru as an optimum of anode catalyst loading, 2 mg cm?2 of Pt at the cathode, 2M of methanol as an optimum fuel concentration, and an optimum temperature at 90°C. Under the same conditions of cells, the passive DEFCs are shown to be 10.2 mW cm?2 in the maximum peak of power density with 2M ethanol. Based on our knowledge, this is the first work that reports the optimization works of performance SA‐based membrane in the passive DMFCs via experimental studies of single cells and the primary performance of passive DEFCs using the SA‐based membrane as polymer electrolyte membrane.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号