首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   929篇
  免费   32篇
  国内免费   5篇
电工技术   7篇
化学工业   173篇
金属工艺   34篇
机械仪表   14篇
建筑科学   21篇
矿业工程   2篇
能源动力   51篇
轻工业   46篇
水利工程   4篇
石油天然气   1篇
无线电   119篇
一般工业技术   235篇
冶金工业   91篇
原子能技术   28篇
自动化技术   140篇
  2023年   10篇
  2022年   29篇
  2021年   45篇
  2020年   45篇
  2019年   35篇
  2018年   53篇
  2017年   37篇
  2016年   27篇
  2015年   23篇
  2014年   31篇
  2013年   49篇
  2012年   37篇
  2011年   43篇
  2010年   27篇
  2009年   35篇
  2008年   29篇
  2007年   34篇
  2006年   19篇
  2005年   14篇
  2004年   10篇
  2003年   11篇
  2002年   14篇
  2001年   16篇
  2000年   17篇
  1999年   13篇
  1998年   24篇
  1997年   15篇
  1996年   21篇
  1995年   17篇
  1994年   16篇
  1993年   20篇
  1992年   11篇
  1991年   17篇
  1990年   16篇
  1989年   14篇
  1988年   10篇
  1987年   4篇
  1986年   12篇
  1985年   8篇
  1984年   5篇
  1983年   14篇
  1982年   9篇
  1980年   3篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1970年   2篇
排序方式: 共有966条查询结果,搜索用时 18 毫秒
921.
Polyurea is being widely advocated as a “retrofit” coating on structures, which mandate protection against blast. The physical properties of polyurea can be tuned by judicious choice of reactants, and the processing methodology employed for its preparation. The purpose of this study is to establish the dependence of material properties on the soft segment length in polyurea. Polyurea formulations were prepared by reaction of commercially available isocyanate prepolymer with poly(propylene oxide) based amines of varying molecular weights (230–2000 g/mol). The effect of increasing the soft segment length on the mechanical properties of polyurea under both quasi‐static as well as dynamic conditions was determined. Ductility was found to increase proportionally with increasing soft segment length, with a concomitant decrease in the tensile strength. All the compositions exhibited sub‐ambient glass transition temperature, which was found to reduce with increasing soft‐segment length. Time–temperature superposition principle was used to arrive at master curves for all compositions. The frequency essential to initiate the process of dynamic “rubber to glass” transition was found to be directly proportional to the soft segment length. All the formulations were found to be capable of exhibiting an elastomeric response even under high frequencies typical of blast loadings. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46284.  相似文献   
922.
The polymer nanocomposite films (PNC) with varying amounts of organically modified sodium montmorillonite (DMMT) clay in poly(methyl methacrylate) (PMMA) based polymer matrix were prepared by solution cast technique. Dielectric measurements were carried out on these films as a function of frequency at 30°C and 100°C. The addition of clay significantly improved the ionic conductivity. Transport parameters, such as the diffusion coefficient (D), number density (n) and mobility (μ) of charge carriers were determined using a new approach, which is based on impedance spectroscopy. The temperature‐dependent dc conductivity, relaxation and mobility plots obey the Arrhenius rule. The results suggest that the higher ionic conductivity of these PNC films at elevated temperature is not only due to increased mobility of ions, but it is accompanied by a significant increase in carrier concentration. Analysis of DSC thermogram reveals a very high percentage of amorphous content for all samples. A good correlation among dielectric permittivity, carrier concentration, mobility and ionic conductivity has also been observed. POLYM. ENG. SCI., 58:220–227, 2018. © 2017 Society of Plastics Engineers  相似文献   
923.
In this article, we have studied the effect of microcapsule shell material on the mechanical behavior of self‐healing epoxy composites. Liquid epoxy healant was encapsulated in melamine‐formaldehyde (MF) and urea‐formaldehyde (UF), using emulsion polymerization technique to prepare microcapsules of different shell walls. The core content of the microcapsules, as determined by solvent extraction technique was found to be 65 ± 4%, irrespective of the shell wall of microcapsule. Morphological investigations reveal a rough texture of the spherical microcapsules, which was attributed to the presence of protruding polymer nanoparticles on the surface. Epoxy composites containing UF and MF microcapsules (3–15% w/w) were prepared by room temperature curing and their mechanical behaviour was studied under both quasi‐static and dynamic loadings. The tensile strength, modulus, and impact resistance of the matrix was found to decrease with increasing amount of microcapsule in the formulation, irrespective of the shell wall material used for encapsulation. Interestingly, substantial improvement in the fracture toughness of the base resin was observed. Morphological investigations on the cracked surface revealed features like crack pinning, crack bowing, microcracking and crack path deflection, which were used to explain the toughened nature of microcapsule containing epoxy composites. Our studies clearly indicate that the microcapsule shell wall material does not play any significant role in defining the mechanical properties of the composites. In addition, presence of secondary amine functionalities in UF and MF shell wall do not interfere with the reaction of epoxy with triethylene tetramine hardener during the curing process. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40572.  相似文献   
924.
A series of poly(amic acid) (PAA) solutions were prepared by sol–gel condensation of 4,4′‐oxydianiline (ODA) and 4,4′‐oxydiphthalic anhydride (ODPA), containing various wt % (5, 10, 15) of an iron oxide precursor, that is, tris(acetylacetonato)iron(III) complex. The resulting PAA solutions were electrospun at 78 kV and collected as webs of nonwoven nanofibers of diameter ~60–70 nm and subsequently converted to iron oxide‐modified polyimide (PI) nanofibers by slow thermal imidization. Aminopropyl triethoxysilane (APTES) and tetraethoxyorthosilicate (TEOS) were used as coupling agent and silica precursor, respectively, to enhance the compatibility between organic polymer matrix and inorganic moieties. SEM images reveal smooth and defect‐free surface morphologies of the nanofibers. Superparamagnetic properties of the nanofibers were revealed by vibrating sample magnetometer (VSM). FT‐infrared spectroscopy (IR), powder XRD, thermogravimetric analysis, and differential scanning calorimetry were employed to systematically characterize material structural properties, thermal stabilities, etc. Nanowebs showed excellent thermal stability around 446°C, with a glass transition temperature around 270°C. The above study demonstrates a good example for fabrication of highly thermally stable bead‐free nanofiber webs by needleless electrospinning. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40432.  相似文献   
925.
In air-conditioning systems, conditioned warm/cold air is supplied to the room depending upon winter/summer. This air should be properly distributed into the room so that there are neither draft conditions nor stagnant zones. In this investigation air circulation and temperature distribution in a room have been studied for a particular location of air inlet and outlet on opposite walls. Two-dimensional, steady, laminar, incompressible flow has been considered. Navier–Stokes equation and energy equations in two-dimensional rectangular Cartesian co-ordinates have been numerically solved using control volume method. Boussinesq's approximation has been used for buoyancy force.  相似文献   
926.
The atmospheric Se levels in Mumbai varied between 0.02 and 1.92 ng m(-3) with a mean concentration of 0.21 ng m(-3). The daily intake of Se by the adult population of Mumbai is 61.9 microg day(-1). Differential pulse cathodic stripping voltammetry (DP-CSV) has been used for the determination of Se in air particulate and food samples. The detection limit of Se using DPCSV was found to be 0.05 ng ml(-1). The reliability of estimation was further assessed through the analysis of standard reference materials (SRMs), tuna fish, animal blood, milk powder and fish tissue obtained from IAEA. The frequency distribution of dietary intake levels of selenium for Mumbai adults showed that approximately 61% of the studied population have a dietary intake of 30-90 microg day(-1). Ingestion was found to be the main route of Se exposure for Mumbai adults. The turn over time of Se through blood is 17 days.  相似文献   
927.
Optimization of microfluidic fuel cells using transport principles   总被引:1,自引:0,他引:1  
Microfluidic fuel cells exploit the lack of convective mixing at low Reynolds number to eliminate the need for a physical membrane to separate the fuel from the oxidant. Slow transport of reactants in combination with high catalytic surface-to-volume ratios often inhibit the efficiency of a microfluidic fuel cell. The performance of microfluidic devices that rely on surface electrochemical reactions is controlled by the interplay between reaction kinetics and the rate of mass transfer to the reactive surfaces. This paper presents theoretical and experimental work to describe the role of flow rate, microchannel geometry, and location of electrodes within a microfluidic fuel cell on its performance. A transport model, based on the convective-diffusive flux of reactants, is developed that describes the optimal conditions for maximizing both the average current density and the percentage of fuel utilized. The results show that the performance can be improved when the design of the device includes electrodes smaller than a critical length. The results of this study advance current approaches to the design of microfluidic fuel cells and other electrochemically-coupled microfluidic devices.  相似文献   
928.
The viceroy-monarch and viceroy-queen butterfly associations are classic examples of mimicry. These relationships were originally classified as Batesian, or parasitic, but were later reclassified as Müllerian, or mutalistic, based on predator bioassays. The Müllerian reclassification implies that viceroy is unpalatable because it too is chemically defended like the queen and the monarch. However, unlike the queen and the monarch, the viceroy defensive chemistry has remained uncharacterized. We demonstrate that the viceroy butterfly (Limenitis archippus, Nymphalidae) not only sequesters nonvolatile defensive compounds from its larval host-plant, the Carolina willow (Salix caroliniana, Salicaceae), but also secretes volatile defensive compounds when disturbed. We developed liquid chromatography-mass spectrometry-mass spectrometry methods to identify a set of phenolic glycosides shared between the adult viceroy butterfly and the Carolina willow, and solid phase microextraction and gas chromatography-mass spectrometry methods to identify volatile phenolic compounds released from stressed viceroy butterflies. In both approaches, all structures were characterized based on their mass spectral fragmentation patterns and confirmed with authentic standards. The phenolics we found are known to deter predator attack in other prey systems, including other willow-feeding insect species. Because these compounds have a generalized defensive function at the concentrations we described, our results are consistent with the Müllerian reclassification put forth by other researchers based on bioassay results. It seems that the viceroy butterfly possesses chemical defenses different from its monarch and queen butterfly counterparts (phenolic glycosides vs. cardiac glycosides, respectively), an unusual phenomenon in mimicry warranting future study.  相似文献   
929.
The present work predicts the performance parameters, namely brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), peak pressure, exhaust gas temperature and exhaust emissions of a single cylinder four-stroke diesel engine at different injection timings and engine load using blended mixture of polanga biodiesel by artificial neural network (ANN). The properties of biodiesel produced from polanga were measured based on ASTM standards. Using some of the experimental data for training, an ANN model was developed based on standard back-propagation algorithm for the engine. Multi-layer perception network was used for non-linear mapping between input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the developed ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.99946, 0.99968, 0.99988, 0.99967, 0.99899, 0.99941 and 0.99991 for the BSFC, BTE, peak pressure, exhaust gas temperature, NOx, smoke and unburned hydrocarbon emissions, respectively. The experimental results revealed that the blended fuel provides better engine performance and improved emission characteristics.  相似文献   
930.
Magnetohydrodynamic flow and heat transfer in an ionic viscous fluid in a porous medium induced by a stretching spinning disc and modulated by electroosmosis under an axial magnetic field and radial electrical field is presented in this study. The effects of convective wall boundary conditions, Joule heating and viscous dissipation are incorporated. The governing partial differential conservation equations are transformed into a system of self-similar coupled, nonlinear ordinary differential equations with associated boundary conditions. The Matlab bvp4c solver featuring a shooting technique and the fourth-order Runge–Kutta–Fehlberg method are used to numerically solve the governing dimensionless boundary value problem. Multivariate analysis is also performed to examine the thermal characteristics. An increase in rotation parameter induces a reduction in the radial velocity, whereas it elevates the tangential velocity. Greater electrical field parameter strongly damps the radial velocity whereas it slightly decreases the tangential velocity. Increasing magnetic parameter also damps both the radial and tangential velocities. An increment in electroosmotic parameter substantially decelerates the radial flow but has a weak effect on the tangential velocity field. Increasing permeability parameter (inversely proportional to permeability) markedly damps both radial and tangential velocities. The pressure gradient is initially enhanced near the disk surface but reduced further from the disk surface with increasing magnetic parameter and electrical field parameter, whereas the opposite effect is produced with increasing Joule dissipation. Increasing magnetic and rotational parameters generate a strong heating effect and boost temperature and thermal boundary layer thickness. Nusselt number is boosted with increasing Brinkman number (viscous heating effect) and Reynolds number. The simulations are relevant to electromagnetic coating flows, bioreactors and electrochemical sensing technologies in medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号