首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   9篇
  国内免费   2篇
电工技术   4篇
化学工业   83篇
金属工艺   4篇
机械仪表   11篇
建筑科学   6篇
矿业工程   11篇
能源动力   22篇
轻工业   83篇
水利工程   1篇
无线电   65篇
一般工业技术   69篇
冶金工业   59篇
原子能技术   4篇
自动化技术   78篇
  2023年   5篇
  2022年   9篇
  2021年   10篇
  2020年   8篇
  2019年   13篇
  2018年   13篇
  2017年   16篇
  2016年   10篇
  2015年   5篇
  2014年   10篇
  2013年   37篇
  2012年   17篇
  2011年   14篇
  2010年   12篇
  2009年   15篇
  2008年   24篇
  2007年   14篇
  2006年   16篇
  2005年   12篇
  2004年   13篇
  2003年   12篇
  2002年   8篇
  2001年   13篇
  2000年   8篇
  1999年   13篇
  1998年   22篇
  1997年   17篇
  1996年   7篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   10篇
  1991年   9篇
  1990年   8篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1983年   9篇
  1982年   3篇
  1981年   8篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   7篇
  1975年   4篇
  1973年   8篇
  1971年   3篇
排序方式: 共有500条查询结果,搜索用时 15 毫秒
71.
Checkpointing algorithms are classified as synchronous and asynchronous in the literature. In synchronous checkpointing, processes synchronize their checkpointing activities so that a globally consistent set of checkpoints is always maintained in the system. Synchronizing checkpointing activity involves message overhead and process execution may have to be suspended during the checkpointing coordination, resulting in performance degradation. In asynchronous checkpointing, processes take checkpoints without any coordination with others. Asynchronous checkpointing provides maximum autonomy for processes to take checkpoints; however, some of the checkpoints taken may not lie on any consistent global checkpoint, thus making the checkpointing efforts useless. Asynchronous checkpointing algorithms in the literature can reduce the number of useless checkpoints by making processes take communication induced checkpoints besides asynchronous checkpoints. We call such algorithms quasi-synchronous. In this paper, we present a theoretical framework for characterizing and classifying such algorithms. The theory not only helps to classify and characterize the quasi-synchronous checkpointing algorithms, but also helps to analyze the properties and limitations of the algorithms belonging to each class. It also provides guidelines for designing and evaluating such algorithms  相似文献   
72.
Replicated databases that use quorum-consensus algorithms to perform majority voting are prone to deadlocks. Due to the P-out-of-Q nature of quorum requests, deadlocks that arise are generalized deadlocks and are hard to detect. We present an efficient distributed algorithm to detect generalized deadlocks in replicated databases. The algorithm performs reduction of a distributed wait-for-graph (WFG) to determine the existence of a deadlock. If sufficient information to decide the reducibility of a node is not available at that node, the algorithm attempts reduction later in a lazy manner. We prove the correctness of the algorithm. The algorithm has a message complexity of 2e messages and a worst-case time complexity of 2d+2 hops, where e is the number of edges and d is the diameter of the WFG. The algorithm is shown to perform significantly better in both time and message complexity than the best known existing algorithms. We conjecture that this is an optimal algorithm, in time and message complexity, to detect generalized deadlocks if no transaction has complete knowledge of the topology of the WFG or the system and the deadlock detection is to be carried out in a distributed manner  相似文献   
73.
Efficient allocation of communication channels is critical for the performance of cellular systems. The centralized channel allocation algorithms proposed in literature are neither robust nor scalable. Several of these algorithms are unable to dynamically adjust to spatial and temporal fluctuations in channel demand (load). We present a distributed dynamic channel allocation (DCA) algorithm in which heavily loaded regions acquire a large number of communication channels, while their lightly loaded neighbors get assigned fewer channels. As the spatial distribution of channel demand changes with time, the spatial distribution of allocated channels adjusts accordingly. The algorithm described in this paper requires minimal involvement of the mobile nodes, thus conserving their limited energy supply. The algorithm is proved to be deadlock free, starvation free, and fair. It prevents cochannel interference and can tolerate the failure of mobile as well as static nodes without any significant degradation in service. Simulation experiments demonstrate that the performance of the proposed distributed dynamic algorithm is comparable to, and for some metrics, better than that of efficient centralized dynamic algorithms where the central switch has complete and latest information about channel availability. The major advantages of the proposed algorithm over its dynamic centralized counterparts are its scalability, flexibility, and low computation and communication overheads  相似文献   
74.
Tensile yield behavior of the blends of polypropylene (PP) with ethylene‐propylene‐diene rubber (EPDM) is studied in blend composition range 0–40 wt % EPDM rubber. These blends were prepared in a laboratory internal mixer by simultaneous blending and dynamic vulcanization. Vulcanization was performed with dimethylol phenolic resin. For comparison, unvulcanized PP/EPDM blends were also prepared. In comparison to the unvulcanized blends, dynamically vulcanized blends showed higher yield stress and modulus. The increase of interfacial adhesion caused by production of three‐dimensional network is considered to be the most important factor in the improvement. It permits the interaction of the stress concentrate zone developed at the rubber particles and causes shear yielding of the PP matrix. Systematic changes with varying blend composition were found in stress‐strain behavior in the yield region, viz., in yield stress, yield strain, width of yield peak, and work of yield. Analysis of yield stress data on the basis of the various expressions of first power and two‐thirds power laws of blend compositions dependence and the porosity model led to consistent results from all expression about the variation of stress concentration effect in both unvulcanized and vulcanized blend systems. Shapes and sizes of dispersed rubber phase (EPDM) domains at various blend compositions were studied by scanning electron microscopy. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2104–2121, 2000  相似文献   
75.
The deformation and fracture behavior of several dynamic vulcanizate blends of isotactic polypropylene with ethylene‐propylene‐diene rubber (EPDM) was examined and compared with those of uncrosslinked blends of PP/EPDM. These blends were prepared by melt mixing in an internal mixer at 190°C in a composition range of 10–40 wt % EPDM rubber. The variation in yield stress, the strength of fibrils of the craze, and the number density of the EPDM rubber domains (morphology fixation) that are dominant factors for enhancing interfacial adhesion and toughness in dynamic vulcanizate blends were evaluated. The ductility and toughness of these materials were explained in light of the composition between crack formation and the degree of plastic deformation through crazing and shear yielding. The physicomechanical properties including the hardness, yield stress, Young's modulus, percentage elongation, impact strength, flexural strength, and flexural modulus of dynamic vulcanized blends were found to be consistent and displayed higher values compared with uncrosslinked blends. The nucleation effect of the crosslinked particles and the decrease of crystallinity of the EPDM rubber were also considered to contribute to the improvement in the impact strength. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2089–2103, 2000  相似文献   
76.
Modified geometries for a Rotman-type bootlace lens have been proposed. The effects of design parameters on the shape of the lens and on the path length error have been investigated. The proposed geometries have been analyzed by the contour integral approach. Results obtained for the proposed lenses have been compared. © 1998 John Wiley & Sons, Inc. Int J RF and Microwave CAE 8: 321–338, 1998.  相似文献   
77.
DOA: DSR over AODV Routing for Mobile Ad Hoc Networks   总被引:2,自引:0,他引:2  
We present a lightweight hierarchical routing model, Way Point Routing (WPR), in which a number of intermediate nodes on a route are selected as waypoints and the route is divided into segments by the waypoints. Waypoints, including the source and the destination, run a high-level intersegment routing protocol, while the nodes on each segment run a low-level intrasegment routing protocol. One distinct advantage of our model is that when a node on the route moves out or fails, instead of discarding the whole original route and discovering a new route from the source to the destination, only the two waypoint nodes of the broken segment have to find a new segment. In addition, our model is lightweight because it maintains a hierarchy only for nodes on active routes. On the other hand, existing hierarchical routing protocols such as CGSR and ZRP maintain hierarchies for the entire network. We present an instantiation of WPR, where we use DSR as the intersegment routing protocol and AODV as the intrasegment routing protocol. This instantiation is termed DSR over AODV (DOA) routing protocol. Thus, DSR and AODV—two well-known on-demand routing protocols for MANETs—are combined into one hierarchical routing protocol and become two special cases of our protocol. Furthermore, we present two novel techniques for DOA: one is an efficient loop detection method and the other is a multitarget route discovery. Simulation results show that DOA scales well for large networks with more than 1,000 nodes, incurring about 60 percent-80 percent less overhead than AODV, while other metrics are better than or comparable to AODV and DSR.  相似文献   
78.
Zn0.9Cd0.1S nanoparticles doped with 0.005–0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M) particle size, d XRD is ~3.5 nm, while for high cobalt concentration (>0.05 M) particle size decreases abruptly (~2 nm) as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm) irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie–Weiss temperature of −75 K with antiferromagnetic coupling was obtained for the high cobalt concentration.  相似文献   
79.
The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA)), transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency.  相似文献   
80.
Sulfated zirconia is a very strong solid acid catalyst which can be utilized for various reactions. The present study focuses on synthesis of zirconia-based catalyst with high acidity and high surface area, particularly for isomerization reaction. Sulfated zirconia has been obtained by sulfation of zirconia prepared by hydrothermal route. The catalyst was developed by impregnating tungstophosphoric acid on sulfated zirconia by wet incipient method. The catalyst was characterized through Brunauer–Emmett–Teller (BET) surface area, temperature-programmed desorption of ammonia, temperature program reduction of hydrogen, Fourier transmission infrared spectroscopy, and thermogravimetric analysis. The results revealed that the catalyst is crystalline in nature with surface area 190–225?m2 g?1 and acidity 0.135–0.558?mmol?g?1. Twenty-five percent conversion was obtained (as confirmed by gas chromatography) at 225°C using n-hexane as model hydrocarbon in fixed-bed microreactor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号