首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   771篇
  免费   63篇
电工技术   8篇
化学工业   358篇
金属工艺   6篇
机械仪表   18篇
建筑科学   17篇
矿业工程   2篇
能源动力   25篇
轻工业   157篇
水利工程   4篇
石油天然气   3篇
无线电   27篇
一般工业技术   100篇
冶金工业   7篇
原子能技术   1篇
自动化技术   101篇
  2024年   3篇
  2023年   10篇
  2022年   92篇
  2021年   79篇
  2020年   30篇
  2019年   25篇
  2018年   36篇
  2017年   28篇
  2016年   33篇
  2015年   26篇
  2014年   38篇
  2013年   54篇
  2012年   52篇
  2011年   63篇
  2010年   40篇
  2009年   41篇
  2008年   47篇
  2007年   36篇
  2006年   27篇
  2005年   11篇
  2004年   9篇
  2003年   14篇
  2002年   11篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有834条查询结果,搜索用时 12 毫秒
21.
To describe the morphological characteristics of the ovarian follicle (F) capillary neoformation and regression, the angiogenic figures were studied by means of scanning electron microscopy of corrosion casts in developing and mature F of rabbit, pig, and cow. Developing F showed gradual neoformation of thecal capillaries characterized by budding and then sprouting, likely from preexisting interstitial vessels. Postcapillary venules frequently showed vasoconstriction rings (sphincters). Vasodilation followed capillary elongation. Mature F, in addition to vessel elongation and dilation, also presented infolding of dilated capillary walls, followed by capillary duplication and sinusoidalization. Periovulatory F mainly showed functional changes, such as capillary dilation, signs of iperpermeabilization, and ischemia, the latter being limited to the apical follicular area. Vessel regression was characterized by thinning of capillaries and presence of avascular areas within the atretic F wall at any stage. This study showed two main types of angiogenic patterns. (a) longitudinal elongation (in series, sprouting angiogenesis) characterizing the initial phase of F development and (b) parallel duplication (in parallel, infolding or intussusceptive angiogenesis), ending in capillary lateral replication or splitting, secondary to functional microvascular changes. Indirect evidence of the establishment of postcapillary resistances contributing to capillary remodeling, was also shown. It is concluded that the sequence of capillary neoformation in mammalian ovarian F occurs in six steps: (1) budding, (2) sprouting (and elongation), (3) dilation, (4) infolding (intussusception), (5) duplication (splitting and elongation), and (6) sinusoidalization. Capillary regression hits F at any stage and characterizes F atresia.  相似文献   
22.
There is a huge need for novel therapeutic and preventative approaches to Alzheimer’s disease (AD) and neuroinflammation seems to be one of the most fascinating solutions. The primary cell type that performs immunosurveillance and helps clear out unwanted chemicals from the brain is the microglia. Microglia work to reestablish efficiency and stop further degeneration in the early stages of AD but mainly fail in the illness’s later phases. This may be caused by a number of reasons, e.g., a protracted exposure to cytokines that induce inflammation and an inappropriate accumulation of amyloid beta (Aβ) peptide. Extracellular amyloid and/or intraneuronal phosphorylated tau in AD can both activate microglia. The activation of TLRs and scavenger receptors, inducing the activation of numerous inflammatory pathways, including the NF-kB, JAK-STAT, and NLRP3 inflammasome, facilitates microglial phagocytosis and activation in response to these mediators. Aβ/tau are taken up by microglia, and their removal from the extracellular space can also have protective effects, but if the illness worsens, an environment that is constantly inflamed and overexposed to an oxidative environment might encourage continuous microglial activation, which can lead to neuroinflammation, oxidative stress, iron overload, and neurotoxicity. The complexity and diversity of the roles that microglia play in health and disease necessitate the urgent development of new biomarkers that identify the activity of different microglia. It is imperative to comprehend the intricate mechanisms that result in microglial impairment to develop new immunomodulating therapies that primarily attempt to recover the physiological role of microglia, allowing them to carry out their core function of brain protection.  相似文献   
23.
We previously reported that a novel peptide vaccine platform, based on synthetic melanin nanoaggregates, triggers strong cytotoxic immune responses and significantly suppresses tumor growth in mice. However, the mechanisms underlying such an efficacy remained poorly described. Herein, we investigated the role of dendritic cells (DCs) in presenting the antigen embedded in the vaccine formulation, as well as the potential stimulatory effect of melanin upon these cells, in vitro by coculture experiments and ELISA/flow cytometry analysis. The vaccine efficiency was evaluated in FLT3-L−/− mice constitutively deficient in DC1, DC2, and pDCs, in Zbtb46DTR chimera mice deficient in DC1 and DC2, and in LangerinDTR mice deficient in dermal DC1 and Langerhans cells. We concluded that DCs, and especially migratory conventional type 1 dendritic cells, seem crucial for mounting the immune response after melanin-based vaccination. We also assessed the protective effect of L-DOPA melanin on peptides from enzymatic digestion, as well as the biodistribution of melanin–peptide nanoaggregates, after subcutaneous injection using [18F]MEL050 PET imaging in mice. L-DOPA melanin proved to act as an efficient carrier for peptides by fully protecting them from enzymatic degradation. L-DOPA melanin did not display any direct stimulatory effects on dendritic cells in vitro. Using PET imaging, we detected melanin–peptide nanoaggregates up to three weeks after subcutaneous injections within the secondary lymphoid tissues, which could explain the sustained immune response observed (up to 4 months) with this vaccine technology.  相似文献   
24.
GLUT1 deficiency syndrome (GLUT1DS1; OMIM #606777) is a rare genetic metabolic disease, characterized by infantile-onset epileptic encephalopathy, global developmental delay, progressive microcephaly, and movement disorders (e.g., spasticity and dystonia). It is caused by heterozygous mutations in the SLC2A1 gene, which encodes the GLUT1 protein, a glucose transporter across the blood-brain barrier (BBB). Most commonly, these variants arise de novo resulting in sporadic cases, although several familial cases with AD inheritance pattern have been described. Twenty-seven Italian pediatric patients, clinically suspect of GLUT1DS from both sporadic and familial cases, have been enrolled. We detected by trios sequencing analysis 25 different variants causing GLUT1DS. Of these, 40% of the identified variants (10 out of 25) had never been reported before, including missense, frameshift, and splice site variants. Their structural mapping on the X-ray structure of GLUT1 strongly suggested the potential pathogenic effects of these novel disease-related mutations, broadening the genotypic spectrum heterogeneity found in the SLC2A1 gene. Moreover, 24% is located in a vulnerable region of the GLUT1 protein that involves transmembrane 4 and 5 helices encoded by exon 4, confirming a mutational hotspot in the SLC2A1 gene. Lastly, we investigated possible correlations between mutation type and clinical and biochemical data observed in our GLUT1DS cohort, revealing that splice site and frameshift variants are related to a more severe phenotype and low CSF parameters.  相似文献   
25.
Cancer is a set of diseases characterized by several hallmark properties, such as increased angiogenesis, proliferation, invasion, and metastasis. The increased angiogenic activity constantly supplies the tumors with nutrients and a plethora of cytokines to ensure cell survival. Along these cytokines is a newly discovered protein, called irisin, which is released into the circulation after physical exercise. Irisin is the product of fibronectin type III domain-containing protein 5 (FNDC5) proteolytic cleavage. Recently it has been the topic of investigation in several types of cancer. In this study, we conducted a systematic review and meta-analysis to investigate its implication in different types of cancer. Our results suggest that irisin expression is decreased in cancer patients, thus it can be used as a valid biomarker for the diagnosis of several types of cancer. In addition, our results indicate that irisin may have an important role in tumor progression and metastasis since it is involved in multiple signaling pathways that promote cell proliferation and migration.  相似文献   
26.
We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system.  相似文献   
27.
Thymic Epithelial Tumors (TETs) represent a rare tumor family, originating from the epithelial component of the thymus gland. Clinicopathologically, they are segregated into six major subtypes, associated with distinct histological features and clinical outcomes. Their emergence and evolution are accompanied by the generation of a complex tumor microenvironment (TME), dominated by phenotypically and functionally divergent immune cellular subsets, in different maturation states and in analogies that vary significantly among different subtypes. These heterogenous leukocyte populations exert either immune-permissive and tumor-suppressive functions or vice versa, and the dynamic equilibrium established among them either dictates the tumor immune milieu towards an immune-tolerance state or enables the development of a productive spontaneous tumoricidal response. The immunologically “hot” microenvironment, defining a significant proportion of TETs, makes them a promising candidate for the implementation of immune checkpoint inhibitors (ICIs). A number of phase I and II clinical trials have already demonstrated significant, type-specific clinical efficacy of PD-L1 inhibitors, even though substantial limitations in their utilization derive from their immune-mediated adverse effects. Moreover, the completed clinical studies involved relatively restricted patient samples and an expansion in the enrolled cohorts is required, so that more trustworthy conclusions regarding the benefit from ICIs in TETs can be extracted.  相似文献   
28.
Human skeletal muscle contains three different types of fibers, each with a different metabolism. Exercise differently contributes to differentiation and metabolism in human myoblast cells. The aims of the present study were to investigate the effects of different types of chronic training on the human LHCN-M2 myoblast cell bioenergetic profile during differentiation in real time and on the ROS overproduction consequent to H2O2 injury. We demonstrated that exercise differently affects the myoblast bioenergetics: aerobic exercise induced the most efficient glycolytic and oxidative capacity and proton leak reduction compared to untrained or anaerobic trained sera-treated cells. Similarly, ROS overproduction after H2O2 stress was lower in cells treated with differently trained sera compared to untrained sera, indicating a cytoprotective effect of training on the reduction of oxidative stress, and thus the promotion of longevity. In conclusion, for the first time, this study has provided knowledge regarding the modifications induced by different types of chronic training on human myoblast cell bioenergetics during the differentiation process in real time, and on ROS overproduction due to stress, with positive implications in terms of longevity.  相似文献   
29.
Intestinal cell dysfunctions involved in obesity and associated diabetes could be correlated with impaired intestinal cell development. To date, the molecular mechanisms underlying these dysfunctions have been poorly investigated because of the lack of a good model for studying obesity. The main aim of this study was to investigate the effects of lipotoxicity on intestinal cell differentiation in small intestinal organoid platforms, which are used to analyze the regulation of cell differentiation. Mouse intestinal organoids were grown in the presence/absence of high palmitate concentrations (0.5 mM) for 48 h to simulate lipotoxicity. Palmitate treatment altered the expression of markers involved in the differentiation of enterocytes and goblet cells in the early (Hes1) and late (Muc2) phases of their development, respectively, and it modified enterocytes and goblet cell numbers. Furthermore, the expression of enteroendocrine cell progenitors (Ngn3) and I cells (CCK) markers was also impaired, as well as CCK-positive cell numbers and CCK secretion. Our data indicate, for the first time, that lipotoxicity simultaneously influences the differentiation of specific intestinal cell types in the gut: enterocytes, goblet cells and CCK cells. Through this study, we identified novel targets associated with molecular mechanisms affected by lipotoxicity that could be important for obesity and diabetes therapy.  相似文献   
30.
Trimethylamine-N-oxide (TMAO) is a uremic toxin, which has been associated with chronic kidney disease (CKD). Renal tubular epithelial cells play a central role in the pathophysiology of CKD. Megalin is an albumin-binding surface receptor on tubular epithelial cells, which is indispensable for urine protein reabsorption. To date, no studies have investigated the effect of TMAO on megalin expression and the functional properties of human tubular epithelial cells. The aim of this study was first to identify the functional effect of TMAO on human renal proximal tubular cells and second, to unravel the effects of TMAO on megalin-cubilin receptor expression. We found through global gene expression analysis that TMAO was associated with kidney disease. The microarray analysis also showed that megalin expression was suppressed by TMAO, which was also validated at the gene and protein level. High glucose and TMAO was shown to downregulate megalin expression and albumin uptake similarly. We also found that TMAO suppressed megalin expression via PI3K and ERK signaling. Furthermore, we showed that candesartan, dapagliflozin and enalaprilat counteracted the suppressive effect of TMAO on megalin expression. Our results may further help us unravel the role of TMAO in CKD development and to identify new therapeutic targets to counteract TMAOs effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号