首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77809篇
  免费   5033篇
  国内免费   1204篇
电工技术   2306篇
技术理论   2篇
综合类   1714篇
化学工业   15546篇
金属工艺   3694篇
机械仪表   4759篇
建筑科学   3230篇
矿业工程   696篇
能源动力   3103篇
轻工业   5768篇
水利工程   671篇
石油天然气   1650篇
武器工业   167篇
无线电   11238篇
一般工业技术   14197篇
冶金工业   5509篇
原子能技术   1041篇
自动化技术   8755篇
  2024年   153篇
  2023年   1046篇
  2022年   1709篇
  2021年   2673篇
  2020年   1935篇
  2019年   1942篇
  2018年   2192篇
  2017年   2332篇
  2016年   2572篇
  2015年   2334篇
  2014年   3491篇
  2013年   4812篇
  2012年   5054篇
  2011年   5882篇
  2010年   4442篇
  2009年   4582篇
  2008年   4349篇
  2007年   3614篇
  2006年   3577篇
  2005年   3037篇
  2004年   2517篇
  2003年   2329篇
  2002年   2175篇
  2001年   1746篇
  2000年   1565篇
  1999年   1606篇
  1998年   2195篇
  1997年   1503篇
  1996年   1285篇
  1995年   931篇
  1994年   762篇
  1993年   616篇
  1992年   475篇
  1991年   399篇
  1990年   362篇
  1989年   322篇
  1988年   295篇
  1987年   222篇
  1986年   166篇
  1985年   143篇
  1984年   126篇
  1983年   83篇
  1982年   66篇
  1981年   52篇
  1980年   43篇
  1979年   48篇
  1978年   34篇
  1977年   44篇
  1976年   71篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
阐述电磁安全的战略背景,分析电磁兼容到电磁安全的演化过程,剖析"自扰、互扰、敌扰"等现实迫切问题,阐明电磁干扰、电磁兼容等基本概念和相互关系,提出新需求、新技术、新趋势引发电磁兼容与电磁安全的"六大技术挑战",指出只有在认识和思维上系统性地实现"三个转变",才能实现电磁安全整体能力的提升,最后提出"电磁强国"的"五维布局"建议.  相似文献   
13.
The structural diversity of polyphenols and the inherent limitations of current extraction techniques pose a challenge to extract polyphenols using a simple and green method. Hence, in this study, a method was developed to simultaneously fractionate multiple classes of polyphenols by only varying ethanol-water solutions. Honeybush tea, which is rich in polyphenols, was selected as a model for this study. Solvent extraction followed by solid-phase extraction (SPE) was developed to obtain a polyphenol-rich fraction from six honeybush samples. Based on a gradient elution programme (10%, 30%, 50%, 70% and 90% (v/v) ethanol-water solution) of SPE, the Strata X cartridge showed a better recovery of most targeted polyphenols under 0.9 mL of the drying volume and 1 mL min−1 of the dispensing speed. The elution programme for fractionating most polyphenols was as follows: single elution with 50% ethanol, followed by twice elution with 70% ethanol. The antioxidant capacity was used to analyse the differences among the polyphenol-rich fractions from six honeybush samples. Principal component analysis (PCA) revealed that unfermented C. genistoides (GG) has the greatest antioxidant capacity among the honeybush species studied. Additionally, mangiferin, isomangiferin and vicenin-2 were the main contributors to the antioxidant capacity in six honeybush fractions according to the correlation study.  相似文献   
14.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
15.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   
16.
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.  相似文献   
17.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
18.
19.
In this study, amaranth flour was used as an ingredient to prepare gluten-free cookies. The production process and attributes of amaranth cookies were characterised, and the potential use of amaranth flour as a functional ingredient was analysed. Cookies exhibited a non-uniform reddish brown colour and a cookie factor ratio of 4.5 ± 0.6. Storage studies indicated that after 3 weeks at room temperature cookies presented slight variations in the texture. Simulated gastrointestinal digestion of this product was able to release peptides capable of exerting potential antithrombotic and antihypertensive activities, IC50 values of 0.22 ± 0.04 and 0.23 ± 0.03 mg mL−1 protein, respectively. This work demonstrates for the first time that food made with amaranth flour exerts potential antithrombotic and antihypertensive activity. In conclusion, these amaranth cookies could be an alternative way of incorporating potentially health beneficial products for people who choose a conscious diet, including coeliac or vegan consumers.  相似文献   
20.
Amino acid modified polyaspartic acids were evaluated as calcium-scale inhibitors. Feasibility of scale inhibition experiments was analyzed by molecular dynamics simulation and Gaussian optimization, and the scale inhibition mechanism was theoretically analyzed. Scale inhibition performance was studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, static scale inhibition experiments, and electrochemical performance testing, which provided an experimental basis for the molecular dynamics simulation. The experimental results showed that Arg-SA-PASP has better scale inhibition and corrosion inhibition performance than His-SA-PASP. The scale inhibition effect increased with increasing concentration. Electrochemical tests indicated that Arg-SA-PASP is an excellent scale and corrosion inhibitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号