首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2354篇
  免费   81篇
  国内免费   3篇
电工技术   114篇
综合类   4篇
化学工业   605篇
金属工艺   68篇
机械仪表   34篇
建筑科学   36篇
矿业工程   1篇
能源动力   126篇
轻工业   167篇
水利工程   6篇
石油天然气   3篇
无线电   191篇
一般工业技术   503篇
冶金工业   331篇
原子能技术   60篇
自动化技术   189篇
  2023年   9篇
  2022年   25篇
  2021年   48篇
  2020年   19篇
  2019年   44篇
  2018年   48篇
  2017年   50篇
  2016年   60篇
  2015年   49篇
  2014年   53篇
  2013年   104篇
  2012年   109篇
  2011年   138篇
  2010年   88篇
  2009年   113篇
  2008年   105篇
  2007年   104篇
  2006年   72篇
  2005年   74篇
  2004年   76篇
  2003年   75篇
  2002年   63篇
  2001年   58篇
  2000年   36篇
  1999年   58篇
  1998年   133篇
  1997年   105篇
  1996年   58篇
  1995年   45篇
  1994年   44篇
  1993年   49篇
  1992年   30篇
  1991年   38篇
  1990年   24篇
  1989年   21篇
  1988年   15篇
  1987年   23篇
  1986年   21篇
  1985年   12篇
  1984年   23篇
  1983年   12篇
  1982年   17篇
  1981年   11篇
  1980年   20篇
  1979年   7篇
  1978年   5篇
  1976年   15篇
  1975年   8篇
  1972年   5篇
  1968年   5篇
排序方式: 共有2438条查询结果,搜索用时 15 毫秒
101.
The photodegradation of polypropylene (PP) film was performed by a TiO2/polyethylene oxide (PEO)/plant oil paint photocatalyst system. The photodegradation underwent two stages of development as follows: Initially PP reacted with linoleic acid radical originated from the photoreaction of plant oil component. Second, the linoleic acid graft‐polymer was decomposed, and then PP chain scission was caused. The process was studied using methyl linoleate (ML) in detail. The melting point of the 24 h‐photodegraded PP slightly decreased, and those of the 48 h‐ and 96 h‐ones drastically did as compared with the pristine PP. The crystallinity (χc) decreased at the 48 h photodegradation time and drastically increased at the 96 h one. The 24 h‐photodegraded PP showed the 77% Young's modulus, 88% tensile strength, and 103% strain at break values to those of the pristine PP. The ML graft‐polymerization and decomposition brought about the PP plasticizing and chemi‐crystallization, causing the PP degradation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39909.  相似文献   
102.
Immunoglobulin G (IgG) adopts a modular multidomain structure that mediates antigen recognition and effector functions, such as complement-dependent cytotoxicity. IgG molecules are self-assembled into a hexameric ring on antigen-containing membranes, recruiting the complement component C1q. In order to provide deeper insights into the initial step of the complement pathway, we report a high-speed atomic force microscopy study for the quantitative visualization of the interaction between mouse IgG and the C1 complex composed of C1q, C1r, and C1s. The results showed that the C1q in the C1 complex is restricted regarding internal motion, and that it has a stronger binding affinity for on-membrane IgG2b assemblages than C1q alone, presumably because of the lower conformational entropy loss upon binding. Furthermore, we visualized a 1:1 stoichiometric interaction between C1/C1q and an IgG2a variant that lacks the entire CH1 domain in the absence of an antigen. In addition to the canonical C1q-binding site on Fc, their interactions are mediated through a secondary site on the CL domain that is cryptic in the presence of the CH1 domain. Our findings offer clues for novel-modality therapeutic antibodies.  相似文献   
103.
This study investigated whether hydrogels comprising hydrophilic cationic polymers have similar bactericidal effects. Bacteria were seeded on hydrogels and agar and their viability was assessed with time. Cationic hydrogels displayed bactericidal effects upon long-term bacterial contact. Furthermore, we assessed the areal density of cationic monomer unit of the cationic hydrogels, water content, and the initial elastic modulus. We examined correlations between each factor and bacterial death ratios; consequently, the bacterial death ratios were strongly correlated with the areal density of cationic hydrogel monomers. Elastic energy (Wel) generated at the cytomembrane ion-binding region and the cationic hydrogel and the cytomembrane interfacial energy (Wf) were estimated; consequently, Wel exceeded Wf at higher contact areas. The cationic hydrogel may extract cytomembranes with a reasonable adsorption area. Therefore, cationic hydrogels may be used as probes for ultrasonic echo to sterilize medical equipment.  相似文献   
104.
Therapeutic vascular catheterization techniques are sometimes hampered by the frictional forces between the blood vessel and the catheter, when contact points of the vessel are changing and deforming during the movement of the catheter. The goal of the present study was to characterize frictional interactions between the blood vessel wall and the catheter using experimental and numerical analysis. First, the frictional force was measured with an experimental apparatus that uses a ball and flattened porcine aorta to simulate frictional forces between the catheter and the vessel. Second, catheter motion was characterized by two-dimensional numerical calculations based on the experimental results. Experimental analysis demonstrated that slip occurred and that friction coefficient between the vessel and the catheter and the deformation of the specimen were small when the contact between the ball and the aorta occurred at a small angle. The compliance of the specimen in the normal direction obtained by the experiment was by far larger than that calculated according to the Hertzian contact theory. Numerical analysis shows that this difference of the parameter of the vessel, which must be determined accurately in surgical simulator, could affect the trajectory of the catheter.  相似文献   
105.
Phasemorphology and mechanical properties of blends of high‐impact polystyrene (HIPS) and polycarbonate (PC) blends compatibilized with a polystyrene (PS) and polyarylate (PAr) (PS–PAr) block copolymer were investigated. Over a broad range of composition from 50/50 through 30/70, HIPS/PC blends formed cocontinuous structures induced by the flow during the extrusion or injection‐molding processes. These cocontinuous phases had heterogeneity between the parallel and perpendicular directions to the flow. The micromorphology in the parallel direction to the flow consisted of stringlike phases, which were highly elongated along the flow. Their longitudinal size was long enough to be longer than 180 μm, while their lateral size was shorter than 5 μm, whereas that in the perpendicular direction to the flow showed a cocontinuous phase with regular spacing due to interconnection or blanching among the stringlike phases. The PS–PAr block copolymer was found to successfully compatibilize the HIPS/PC blends. The lateral size of the stringlike phases could be controlled both by the amount of the PS–PAr block copolymer added and by the shear rate during the extrusion or injection‐molding process without changing their longitudinal size. The HIPS/PC blend compatibilized with 3 wt % of the PS–PAr block copolymer under an average shear rate of 675 s?1 showed a stringlike phase whose lateral size was reduced almost equal to the rubber particle size in HIPS. The tensile modulus and yield stress of the HIPS/PC blends could be explained by the addition rule of each component, while the elongation at break was almost equal to that of PC. These mechanical properties of the HIPS/PC blends can be explained by a parallel connection model independent of the HIPS and PC phases. On the other hand, the toughness factor of the HIPS/PC blends strongly depended on the lateral size of the stringlike phases and the rubber particle size in the HIPS. It was found that the size of the string phases and the rubber particle should be smaller than 1.0 μm to attain a reasonable energy absorbency by blending HIPS and PC. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2347–2360, 2001  相似文献   
106.
Active oxidation behavior of CVD-SiC in CO─CO2 atmospheres was investigated using a thermogravimetric technique in the temperature range between 1823 and 1923 K. The gas pressure ratio, P CO2/ P CO, was controlled between 10−4 and 10−1 at 0.1 MPa. Active oxidation rates (mass loss rates) showed maxima at a certain value of P CO2/ P CO, ( P CO2/ P CO )*, In a P CO2/ P CO region lower than the ( P CO2/ P CO)* a carbon layer was formed on the SiC surface. In a P CO2/ P CO region higher than the ( P CO2/ P CO)*, silica particles or a porous silica layer was observed on the SiC surface.  相似文献   
107.
We previously reported that a copolymer consisting of N-isopropylacrylamide (NIPAM) and benzophenone (BP) units, behaves as a photosensitizer showing temperature-controlled oxygenation activity in water (J. Am. Chem. Soc.2006, 128, 8751). This polymer shows a heat-induced oxygenation enhancement at low temperature region (5-20 °C), while showing a heat-induced oxygenation suppression at high temperature region (20-60 °C), resulting in an off-on-off activity profile against the temperature window. This is driven by a heat-induced phase transition of the polymer from coil to micelle and then to globule states. In the present work, effects of adding an amine component (N-[3-(dimethylamino)propyl]acrylamide: DMAPAM) to the polymer on the sensitization activity were studied, where the relationship between the phase transition behavior and the activity was clarified by several spectroscopic analyses. The polymers, poly(NIPAMx-co-BPy-co-DMAPAMz), show activity controlled by temperature and pH. The off-on-off activity profile shifts to higher temperature with a pH decrease. This is because protonation of the DMAPAM units leads to an increase in the polymer polarity and, hence, the polymer aggregates at higher temperature. In addition, increase in the DMAPAM content of the polymer leads to further shift of the activity profile. In contrast, at pH < 8, no activity enhancement is observed because complete protonation of the DMAPAM units suppresses polymer aggregation.  相似文献   
108.
A luminescent Eu, Dy: SrAl2O4 glass‐ceramics with high transparency in the visible region was successfully synthesized using the frozen sorbet technique with the control of O2 partial pressure () for the oxidation of Eu2+ ions. The glass‐ceramics include Eu2+, Eu3+, and Dy3+ ions, and thus exhibits three characteristic types of emission bands, 4f–5d at around 520 nm (Eu2+ ions), 4f–4f at 610 nm (Eu3+ ions), and 480 nm (Dy3+ ions). The Eu, Dy: SrAl2O4 glass‐ceramics provide remarkable long‐persistent luminescence under dark condition. The glass‐ceramics also exhibits color‐changing luminescence in the visible region based on their remarkable light storage properties. The luminescent Eu, Dy: SrAl2O4 glass‐ceramics using the frozen sorbet technique with control of are promising materials for application in novel photonic and light storage materials.  相似文献   
109.
The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.  相似文献   
110.
Multiply charged ion beam transmission through insulating capillaries is today a very active field of research. Thanks to the work of several groups during the last five years, several features of this unexpected process have been evidenced. The open challenge is to understand and control the self-organized charging-up of the capillary walls, which leads finally to the ion transmission. Up to now, the specific charge distribution on the inner surface, as well as the dynamics of the build-up, are still to be understood. While capillaries usually studied are microscopic pore networks etched in different materials, our concern is in macroscopic single capillaries made of glass. With a length of several centimeters and a diameter of a few micrometers at the exit, these capillaries have nevertheless the same aspect ratio as the etched pores (length/diameter ≈ 100). One of the leading goals of this research on single capillaries is to produce multi-charged ion beams with diameters smaller than a micrometer (nano-beams). These glass capillaries offer the opportunity to be used as an ion funnel due to their amazing properties of guiding and focusing highly charged ion beams without altering neither their initial charge state nor the beam emittance (<10−3 π mm mrad). However, the understanding of the underlying process is not complete and relies on models assuming charge patches distributed along the capillary and which still need to be tested. We present the first observation imaging the dynamics of the charging-up process in single glass capillaries. During the build-up of the self-organized charge deposition on the capillary walls, the 230 keV Xe23+ transmitted beam is deflected back and forth several times as the outgoing current increases. This is in agreement with the picture of charge patches created sequentially along the capillary and thus deflecting the beam until a stationary state is reached.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号