首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1801篇
  免费   108篇
  国内免费   16篇
电工技术   44篇
综合类   8篇
化学工业   489篇
金属工艺   49篇
机械仪表   79篇
建筑科学   61篇
矿业工程   3篇
能源动力   103篇
轻工业   159篇
水利工程   38篇
石油天然气   22篇
武器工业   2篇
无线电   134篇
一般工业技术   320篇
冶金工业   87篇
原子能技术   22篇
自动化技术   305篇
  2024年   4篇
  2023年   56篇
  2022年   92篇
  2021年   135篇
  2020年   112篇
  2019年   128篇
  2018年   139篇
  2017年   115篇
  2016年   118篇
  2015年   83篇
  2014年   97篇
  2013年   163篇
  2012年   124篇
  2011年   108篇
  2010年   80篇
  2009年   79篇
  2008年   53篇
  2007年   46篇
  2006年   35篇
  2005年   15篇
  2004年   10篇
  2003年   13篇
  2002年   11篇
  2001年   2篇
  2000年   7篇
  1999年   9篇
  1998年   18篇
  1997年   9篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1977年   1篇
  1974年   5篇
  1968年   1篇
排序方式: 共有1925条查询结果,搜索用时 15 毫秒
91.
Tetramesitylporphyrin platinum(VI) dihydroxo complex, TMPPt(OH)2 · 2 benzoate was synthesized by addition of two equivalent of meta-chloroperbenzoic acid molecules to the tetramesitylporphyrin platinum(II). This complex was characterized by X-ray diffraction and spectroscopic methods, and is capable to convert two molecules of triphenylphosphine to triphenylphosphine oxide.  相似文献   
92.
Several new isoxazolidines having varying degree of steric environment and hydrophobic chain length, prepared efficiently using single-step nitrone cycloaddition reactions, are tested for corrosion inhibition of mild steel in 1 M and 5 M HCl at 50-70 °C range by gravimetric and electrochemical methods. All compounds have shown very good corrosion inhibition efficiency (IE%) in acidic solution. Steric crowding around the nitrogen centres and hydrophobic chain lengths as well as increase in temperature (in the presence of the inhibitor in the higher concentration range 100-400 ppm) are found to increase the inhibition efficiency of the isoxazolidines. Thermodynamic parameters (ΔG°ads, ΔH°ads, ΔS°ads) for the adsorption process and kinetic parameters for the metal dissolution (or hydrogen evolution) reaction in the presence of one of the isoxazolidines were determined. Experimental results agree with the Temkin adsorption isotherm. The inhibition of corrosion in 1 M HCl, influenced by both physi- and chemi-sorption, was found to be under mixed control, but predominantly under cathodic control.  相似文献   
93.
Coupling of side chain dynamics over long distances is an important component of allostery. Methionine side chains show the largest intrinsic flexibility among methyl-containing residues but the actual degree of conformational averaging depends on the proximity and mobility of neighboring residues. The 13C NMR chemical shifts of the methyl groups of methionine residues located at long distances in the same protein show a similar scaling with respect to the values predicted from the static X-ray structure by quantum methods. This results in a good linear correlation between calculated and observed chemical shifts. The slope is protein dependent and ranges from zero for the highly flexible calmodulin to 0.7 for the much more rigid calcineurin catalytic domain. The linear correlation is indicative of a similar level of side-chain conformational averaging over long distances, and the slope of the correlation line can be interpreted as an order parameter of the global side-chain flexibility.  相似文献   
94.
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.  相似文献   
95.
This study has been carried out to investigate the incorporation of Iron(II) sulfate as an additive of electrolyte on formed AA1010 aluminum alloy, using plasma electrolytic oxidation method in silicate-based electrolytes containing Iron(II) sulfate. In order to fabricate nanocomposite coating, silicon nitride nanopowder was added to electrolyte. The effects of iron(II) sulfate additive on the voltage-time trend, microstructure, compositions, wear, and corrosion resistances of PEO coatings were investigated. In addition, current density and concentration of additive were studied as parameters that were effective on coating. Results showed that although FeSO4 enters to the coating structure, but it does not develop a new phase. The corrosion and wear behavior of coated samples with FeSO4 indicate an improvement as compared to those without additive.  相似文献   
96.
SiC coatings were generated on graphite using slurry sintering (SS) and pack cementation (PC). The samples’ ablation features were assessed by an oxyacetylene torch. The rates of mass ablation of the PC–SiC and SS–SiC coatings were approximated 2.17?×?10?3 and 9.52?×?10?3 g s?1, respectively, decreased by 84.1 and 29.6% compared to the uncoated samples. It was mainly attributed to the formation of a SiO2 layer on the surface. The continuous SiO2 molten film formed via the PC–SiC oxidation generates a sealing mechanism which can be an obstacle against the oxygen diffusion and hinder more ablation. This is while discontinuous SiO2 film formed from the thin SS–SiC cannot protect the graphite effectively. The non-isothermal oxidation test shows that without the SiC coating, the sample weight is lost largely from 25 to 1500 °C, and its weight loss was 2.2% after the TGA. However, after coating, the samples possessed excellent oxidation protection and weight losses of SS–SiC and PC–SiC coatings are down to 1.3 and 0.6%, respectively. The more oxidation of the graphite substrate occurred due to the formation of macrocracks in the coating during the TGA and also the formation of holes on SiO2 glass layer owing to release of CO or CO2.  相似文献   
97.
通过析出硬化提高Al?Si?Cu合金的力学性能.这些合金对时效硬化的反应非常缓慢.为了解决这一问题,在Al?10.5Si?3.4Cu合金中分别加入0.2%、0.4%和0.7%(质量分数)的镁.该新型合金在固溶处理阶段经过两种不同的析出硬化过程.结果表明,添加不同含量的镁可加速该合金对时效处理的响应,提高其硬度和强度.双...  相似文献   
98.
A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 μM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.  相似文献   
99.
In the flooded lead_acid batteries (FLAB), gas bubbles are initially formed on the surface of the electrodes, which are produced by electrochemical reactions, and then released into the electrolyte. In the present investigation, the effect of surface characterization of electrodes of FLAB on the gas bubble dynamic parameters in the electrolyte flow at different charging/discharging rates (C-rates) are studied utilizing particle image velocimetry (PIV) method. The results show that the capacity of FLAB have a linear behav-ior due to changes in each of the two parameters of the surface characterization of electrodes and the C-rate. At all State of charges (SOCs) of FLAB cells in different tests, increasing average roughness (Ra) and average wavelength of the roughness (ka) in the electrode surfaces, results in an increase in average bub-ble diameter and bubble rising velocity. Nevertheless, a sharp decrease in the void fraction of bubbles within the electrolyte was observed due to the increment in ka and Ra. Also, the effect of the rising move-ment of gas bubbles within the electrolyte on the average electrolyte velocity pattern in the gap between the electrodes by changing the surface characterization of electrodes are investigated in detail.  相似文献   
100.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号