首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1384篇
  免费   57篇
  国内免费   8篇
电工技术   18篇
化学工业   269篇
金属工艺   28篇
机械仪表   54篇
建筑科学   20篇
能源动力   88篇
轻工业   80篇
水利工程   6篇
石油天然气   3篇
无线电   193篇
一般工业技术   274篇
冶金工业   153篇
原子能技术   11篇
自动化技术   252篇
  2024年   6篇
  2023年   27篇
  2022年   56篇
  2021年   72篇
  2020年   51篇
  2019年   50篇
  2018年   63篇
  2017年   67篇
  2016年   58篇
  2015年   25篇
  2014年   57篇
  2013年   100篇
  2012年   58篇
  2011年   75篇
  2010年   58篇
  2009年   53篇
  2008年   49篇
  2007年   51篇
  2006年   37篇
  2005年   34篇
  2004年   23篇
  2003年   36篇
  2002年   30篇
  2001年   15篇
  2000年   15篇
  1999年   22篇
  1998年   40篇
  1997年   26篇
  1996年   21篇
  1995年   22篇
  1994年   13篇
  1993年   21篇
  1992年   4篇
  1991年   5篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1984年   6篇
  1983年   4篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   7篇
  1976年   11篇
  1975年   4篇
  1973年   6篇
  1969年   5篇
排序方式: 共有1449条查询结果,搜索用时 15 毫秒
81.
D.K. Anand  I.N. Deif 《Energy》1979,4(4):537-548
System simulations for sizing and performance predictions of various solar systems require some form of weather input to act as a system stimulus. When actual weather data is used, hourly simulations are expensive and require considerable data handling. For many design procedures, however, hourly information is not needed, and simpler methods are desirable. One such method employs a probabilistic approach. This method involves the use of an algorithm that generates a probabilistic matrix, and an analytical formulation which is used to generate synthetic weather data. The approach has been found to be satisfactory. This work uses the stochastic (probablistic) method to produce representative weather for five geographic regions in the U.S. for the summer months. Parallel runs are conducted with real and stochastic weather. A comparison of the results clearly shows that the probabilistic approach can satisfactorily substitute for real weather for long-term system performance.  相似文献   
82.
Biomedical engineering has been recognized in India for the last decade. Technological developments have been in areas of importance to the country, with several groups actively involved in the promotion of bioengineering, particularly in New Delhi. A group at the National Physical Laboratory has contributed significantly to the field of ultrasonics as well as to the development of piezoelectric transducers for other biomedical uses. The Centre for Biomedical Engineering of the Indian Institute of Technology and the All India Institute of Medical Sciences is one of the country's leading centres producing outstanding work in areas like instrumentation, rehabilitation, biomaterials, modelling and analysis. Research in technology applied to reproductive physiology (an area especially relevant to India's needs) was initiated at this centre. Research at the School of Environmental Sciences, Jawaharlal Nehru University has elucidated the effects and mechanisms of the action of low-energy electromagnetic radiation and ultrasound on biological systems--in one of the school's projects the use of bone material for ultrasonic transducers and optical detectors was successfully demonstrated. A selected list of publications shows the wide spectrum of research carried out at these institutions.  相似文献   
83.
Mesoscale eddies enhance the productivity in a stratified coastal environment by upwelling. The seas around the Andaman and Nicobar Islands have been found to have frequent mesoscale eddy activity. Commercial fishing grounds coincide with upwelling areas associated with cyclonic and anticyclonic eddies and also with areas between two adjacent eddies. There are different eddy zones supporting different types of fishing gears and fish. The current study aims at identifying the different zones of mesoscale eddies in the Andaman Sea and compares the productivity and fishing activity in each of them. Data collected from 454 commercial fishing trips in the Andaman Sea along with maps of sea level anomaly and Moderate Resolution Imaging Spectroradiometer (MODIS) global level 3 mapped thermal infrared (IR) daytime sea surface temperature (SST) from the Aqua and Terra satellites were used for the study. Known upwelling areas such as the periphery of anticyclonic and the core of cyclonic eddies showed higher catches in longlines, ring seines among the fishing gears, and among all the fish species groups. Downwelling areas such as the periphery of cyclonic and the core of anticyclonic eddies showed lower catches with ring seines and the fish species groups. Areas in between adjacent eddies were explored in this study and the fish captures in such areas were found to be different with types of fishing and the target fish group. The study shows results that link eddy activity with the performance of a fishery.  相似文献   
84.
85.
In this paper an aerosol charger that largely avoids the production of multiply charged particles in the 0.1–1.0 μm diameter range is described. The input aerosol is first passed through an electrostatic condenser to remove all charged particles and ions. The remaining neutral aerosol then flows into a 23-cm-long, 2.1-cm inner diameter cylindrical tube; the inner surface of this tube is uniformly coated with 0.09 μCi63 Ni, a 0.067 MeV β-emitter with a half-life of 92 years. At typical airflow rates of 0.2–1.0 lpm, this low-activity source of ionizing radiation produces bipolar ion concentrations ranging from 1 × 104 to 9 × 104 ion/cm3, which is much lower than levels required to bring the aerosol to Boltzmann charge equilibrium. At a flow rate of 1.0 lpm, particles smaller than about 1.0 μm typically interact with no more than one ion en route through the charger. Therefore, particles at the charger exit are mostly either neutral or singly charged. Charge distributions of initially-neutral mono-disperse polystyrene latex particles were measured at the exit from the charger for particle diameters ranging in size from 0.09 to 1.09 μm. It was found that, at an airflow rate of 1.0 lpm and particle size 1.09 μm, the ratios of singly, doubly, and triply charged to total positively charged concentrations were 0.75, 0.19, and 0.06 respectively; particles with more than three charges were not detected. In contrast, the analogous charge ratio at Boltzmann equilibrium is 0.28 (+ 1), 0.24 (+ 2), 0.19 (+ 3), 0.13 (+ 4), 0.08 (+ 5), 0.05 (+ 6), and 0.7 (+ 02).  相似文献   
86.
Highly basic CaO nanoparticles immobilized mesoporous carbon materials (CaO-CMK-3) with different pore diameters have been successfully prepared by using wet-impregnation method. The prepared materials were subjected to extensive characterization studies using sophisticated techniques such as XRD, nitrogen adsorption, HRSEM-EDX, HRTEM and temperature programmed desorption of CO2 (TPD of CO2). The physico-chemical characterization results revealed that these materials possess highly dispersed CaO nanoparticles, excellent nanopores with well-ordered structure, high specific surface area, large specific pore volume, pore diameter and very high basicity. We have also demonstrated that the basicity of the CaO-CMK-3 samples can be controlled by simply varying the amount of CaO loading and pore diameter of the carbon support. The basic catalytic performance of the samples was investigated in the base-catalyzed transesterification of ethylacetoacetate by aryl, aliphatic and cyclic primary alcohols. CMK-3 catalyst with higher CaO loading and larger pore diameter was found to be highly active with higher conversion within a very short reaction time. The activity of 30% CaO-CMK3-150 catalyst for transesterification of ethylacetoacetate using different alcohols increases in the following order: octanol > butanol > cyclohexanol > benzyl alcohol > furfuryl alcohol.  相似文献   
87.

A gate-all-around charge plasma nanowire field-effect transistor (GAA CP NW FET) device using the negative-capacitance technique is introduced, termed the GAA CP NW negative-capacitance (NC) FET. In the face of bottleneck issues in nanoscale devices such as rising power dissipation, new techniques must be introduced into FET structures to overcome their major limitations. Negative capacitance is an efficient effect that can be incorporated into a device to enhance its performance for low-power applications and help to reduce the operating voltage. The Landau–Khalatnikov equation can be applied in such cases to obtain the effective bias. To determine the effects of negative capacitance, lead zirconate titanate (PZT) ferroelectric material, a ceramic material with perovskite properties, is adopted as a gate insulator. This approach diminishes the supply voltage and reduces the power dissipation in the device. Excluding their polarization properties, ferroelectric materials are similar to dielectric materials, and PZT offers abundant polarization with improved reliability and a higher dielectric capacitance. Without proper tuning of the thickness of the PZT material, hysteresis behavior mat occur. Hence, the thickness of the PZT material (tFE) is an essential parameter to optimize the device performance and achieve a reduced threshold voltage for the GAA CP NW NC-FET device proposed herein. Furthermore, varying the thickness of the PZT ferroelectric material can also enhance the performance. When using the highest values of tFE, improved outcomes with an analogously lower operating voltage are observed. The effects of varying tFE on the performance characteristics of the device including the drain current, transconductance, polarized charge, etc. are also interpreted herein.

  相似文献   
88.
Sodium potassium niobate (KNN) is the most promising candidate for lead-free piezoelectric material, owing to its high Curie temperature and piezoelectric coefficients among the non-lead piezoelectric. Numerous studies have been carried out to enhance piezoelectric properties of KNN through composition design. This research studied the effects of yttrium concentrations and lattice site occupancy preference in KNN films. For this research, the yttrium-doped KNN thin films (mol% = 0, 0.1, 0.3, 0.5, 0.7 and 0.9) were fabricated using the sol-gel spin coating technique and had revealed the orthorhombic perovskite structures. Based on the replacement of Y3+ ions for K+/ Na+ ions, it was found that the films doped with 0.1 to 0.5 mol% of yttrium had less lattice strain, while films with more than 0.5 mol% of Y3+ ions had increased strain due to the tendency of Y3+ to occupy the B-site in the perovskite lattice. Furthermore, by analysing the vibrational attributes of octahedron bonding, the dopant occupancy at A-site and B-site lattices could be identified. O-Nb-O bonding was asymmetric and became distorted due to the B-site occupancy of yttrium dopants at high dopant concentrations of >0.5 mol%. Extra conduction electrons had resulted in better resistivity of 2.153× 106 Ω at 0.5 mol%, while higher resistivity was recorded for films prepared with higher concentration of more than 0.5 mol%. The introduction of Y3+ improved the grain distribution of KNN structure. Further investigations indicated that yttrium enhances the surface smoothness of the films. However, at high concentrations (0.9 mol%), the yttrium increases the roughness of the surface. Within the studied range of Y3+ , the film with 0.5 mol% Y3+ represented a relatively desirable improvement in dielectric loss, tan δ and quality factor, Qm.  相似文献   
89.
90.
The objective of the research study was to develop and characterize a biodegradable, thermo and pH dual responsive Oxaliplatin-loaded chitosan-graft-poly-N-isopropylacrylamide (CS-g-PNIPAAm) co-polymeric nanoparticles as a tumor-targeting drug delivery system. CS-g-PNIPAAm co-polymers were synthesized, characterized and optimized its thermo and pH responsive properties for tumor microenvironment conditions. Optimized co-polymer could be efficiently loaded with Oxaliplatin in nanoparticle form, evaluated for their morphology (TEM), particle size, zeta potential, loading efficiency and drug content. In vitro drug release study at tumor microenvironment and physiological pH and temperature conditions. The in vitro drug release was optimal at above lower critical solution temperature (LCST) and tumor microenvironment pH when compared to physiological pH & temperature. MTT assay and fluorescence microscopic study showed that drug release and cell uptake was significantly enhanced in tumor microenvironment. In conclusion, the obtained nanoparticles appeared to be of great promise in tumor targeted drug delivery of oxaliplatin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号