首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   2篇
  国内免费   5篇
电工技术   1篇
化学工业   45篇
金属工艺   7篇
机械仪表   9篇
建筑科学   12篇
能源动力   8篇
轻工业   19篇
无线电   12篇
一般工业技术   57篇
冶金工业   7篇
自动化技术   13篇
  2024年   1篇
  2023年   7篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   13篇
  2018年   8篇
  2017年   15篇
  2016年   10篇
  2015年   3篇
  2014年   6篇
  2013年   21篇
  2012年   19篇
  2011年   14篇
  2010年   16篇
  2009年   12篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
  1994年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
21.
This article presents the characteristics of Carica papaya fibers (CPFs) extracted from the bark of the perennial papaya plant. Detailed chemical compositions of CPFs such as cellulose, lignin, ash, moisture, and wax contents were established and determined by using standard methods. Further, chemical groups, crystalline structure, surface roughness, and thermal stability of CPFs were examined using Fourier transform infrared analysis, X-ray diffraction, atomic force microscope, and thermogravimetric analysis, respectively. The physico-chemical properties of CPFs, crystallinity index (56.34%), cellulose content (38.71 wt. %), hemicellulose (11.8%), and density (943 kg/m3) were compared to those properties of other natural fibers. The results suggest that the biodegradable CPFs can be used as a potential reinforcemnet in the polymer matrix composite structure.  相似文献   
22.
23.
The concept of thermal energy storage in building gains a specific importance in the present energy scenario related to energy consumption and indoor thermal comfort. The material used to store the thermal energy which undergoes a phase change referred as PCM and it is considered as a possible solution for reducing energy consumption in the building by storing and releasing heat within a certain temperature range; it raises the building inertia and also stabilizes indoor air temperature fluctuations. The room temperature is controlled by imposing PCM inside the walls. An attempt has been made to compare room air temperature with and without the use of PCM inside the walls of constructed modular building unit. The PCM imposed modular building shows the reduced temperature fluctuations in room, the PCM absorbs and liberates excess heat which is gained from the outer side of the room and maintains constant inner room temperature. The PCM imposed walls of modular building unit have an ability to reduce 10–30% of heat load in comparison with the plain wall. The results showed that reduction in room temperature is about 2–4°C and it has been concluded that the PCM imposed modular building unit has more energy saving opportunities than normal modular building unit.  相似文献   
24.
Cognitive Radio Network (CRN) is an intelligent wireless communication system that adapts itself to variations in the incoming radio frequency stimuli by modifying the operating parameters. Using the spectrum sensing techniques, the idle channels are detected, and allocated to the Secondary Users (SUs). The existing cooperative spectrum sensing techniques such as centralized sensing technique, Distributed sensing technique, and External sensing technique exploit efficient prediction models for allocating the frequency spectrum to SUs. For an optimal assignment of the channel using channel parameters, the channel estimation techniques such as pilot-assisted channel estimation, blind and semi blind estimation technique, and decision directed channel estimation technique are analyzed. The flexible nature of the CRN introduces various security attacks such as Primary User Emulation Attack, Objective Function Attack, Jamming Attack, Spectrum Sensing Data Falsification (SSDF), Control Channel Saturation DoS Attack (CCSD), Selfish Channel Negotiation (SCN), Sinkhole Attacks, HELLO Flood Attacks and Lion Attack. From the surveyed results, it is observed that the existing spectrum sensing, and prediction-based techniques consume more energy, and minimal data transmission rate for detecting the idle channel. Further, the end-to-end delay, energy consumption, end-to-end delay, and bandwidth are not minimized by the existing techniques.  相似文献   
25.
The present research work studies the effect of cryogenic treatment on the residual stress state in 4140 steel. Two kinds of cryogenic treatment, namely shallow (SCT, −80 °C × 5 h) and deep cryogenic treatment (DCT, −196 °C × 24 h) were carried out between quenching and tempering in conventional heat treatment process. The results evidenced an increase in the compressive residual stress in steel are subjected to cryogenic treatment before tempering. X-ray diffractometry revealed that residual stresses are relieved during tempering, according to the redistribution of carbon in martensite and the precipitation of transition carbides. While conventional heat treatment (CHT) and shallow cryogenic treatment (SCT) promote a tensile state of residual stress, DCT shows a compressive residual stress.  相似文献   
26.
In the present work, coated tungsten carbide tool inserts of ISO P-40 grade were subjected to deep cryogenic treatment at ?176°C. Turning studies were conducted on AISI 1040 workpieces using both untreated and deep cryogenic treated tungsten carbide cutting tool inserts. The turning performance was evaluated in terms of flank wear of the cutting tool inserts, main cutting force and surface finish of the machined workpieces. The flank wear of deep cryogenic treated carbide tools was observed to be lower than that of untreated carbide tools in machining of AISI 1040 steel. The cutting force during machining of AISI 1040 steel was lower with the deep cryogenic treated carbide tools when compared with the untreated carbide tools. The surface finish produced on machined AISI 1040 steel workpieces was superior with the deep cryogenic treated carbide tools as compared to the untreated carbide tools.  相似文献   
27.
An experimental investigation to measure the evaporation rates, PSZ-coated engine performance and emissions of radish biodiesel (Methyl Ester of radish oil) and its blends in different volumetric proportions with diesel is presented. The thermo-physical properties of all the fuel blends have been measured and presented. Evaporation rates of neat radish biodiesel, neat diesel and their bends have been measured under slow convective environment of air velocity of 0.2?m/s with a constant temperature of 200°C. Evaporation constants have been determined by using the droplet regression rate data. The neat fuels and fuel blends have been utilised in a test engine with different load conditions to evaluate the performance and emission characteristics of the fuels. From the observed evaporation, performance and emissions characteristics, it can be suggested that a blend of B25–B75 could be optimally used in coated diesel engine settings without any modifications on it.  相似文献   
28.
A series of tetradentate Schiff base metallomesogenic diols were synthesized from two simple dihydroxy benzenes. The metallomesogenic diol was constructed from three ring containing mesogen linked through ester and azomethine with terminal hydroxy group. This upon complexation with copper(II) formed metallomesogenic diol with varying terminal chain length. A series of metallomesogenic polyurethanes were synthesized using these metallomesogenic diols as chain extenders for the prepolymers based on polytetramethylene glycol (PTMG) of varying molecular weight (Mn = 650, 2000) and 2,4-toluene diisocyanate (TDI), or 4,4′-methylene bis(phenyl isocyanate) (MDI). The molar ratio of metallomesogenic diol and PTMG were varied in the polyurethane to find their role in liquid crystalline and mechanical properties. Extensive characterization of all metallomesogenic compounds and intermediates were carried out by FT-IR, 1H and 13C NMR, EPR, VSM, Mass (EI and FAB) and UV–visible spectroscopy. Hot stage polarizing microscope and differential scanning calorimetry were used to ensure the phase characteristics such as nature of phase, melting and clearing temperatures and phase range. The appearance of enantiotropic smectic A phases indicated high molecular polarizability of the core due to the metal ion.  相似文献   
29.
The nickel based as-atomized thermal spray feedstock powder (NiCrFeSiB) was ball milled to produce the nanostructured powder. The feedstock powder was mechanically milled using two station planetary ball-mill. The milled and unmilled feedstock powders were coated using High-velocity oxygen fuel system to produce nanostructured and conventional coatings respectively on the carbon steel substrate (SA210 Grade C). The metallurgical characterization of feedstock powders and coatings were performed using scanning electron microscope, High resolution- transmission electron microscope coupled with energy dispersive spectroscopy and X-ray diffraction techniques. The developed coatings were mechanically characterized by microhardness test and bond strength measurement techniques. The porosity of the coating was measured by analyzing the optical microscope image using the image-J software. In this study, nanostructured coatings exhibited higher hardness, less porous and better bond strength compared to conventional coating.  相似文献   
30.
We report the fabrication of ITO/n-ZnO NW/p-Si sandwiched structure and its photoelectric and piezoelectric conversion properties. This hybrid cell was designed to harvest simultaneously both solar and mechanical energies. ZnO nanowires used in the work were grown on p-type Si substrates employing seed mediated low-temperature aqueous solution method. The synthesized ZnO nanowires were characterized by XRD, SEM and EDX characterization for their structural and morphological evaluation. The as-grown ZnO nanowires showed good crystallinity with c-axis preferable orientation. Free ZnO nanowires and CdSe quantum dots were also incorporated with the vertically grown nanowires and their response in harvesting optical and mechanical energies were investigated. The piezoelectric and photoelectric coupled effects of a ZnO nanowire device in the simultaneous conversion of both optical and mechanical energies have been studied for the first time with the goal of designing piezoelectric and photoelectric hybrid nanogenerator. This presented ITO/n-ZnO NW/p-Si heterojunction architecture is envisaged as a potentially valuable candidate for the next generation energy harvesting devices. Graphene-coated ITO was also used and its response was studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号