首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   5篇
电工技术   8篇
化学工业   26篇
金属工艺   2篇
机械仪表   6篇
建筑科学   5篇
能源动力   7篇
轻工业   24篇
水利工程   2篇
石油天然气   1篇
无线电   9篇
一般工业技术   20篇
原子能技术   1篇
自动化技术   30篇
  2023年   3篇
  2022年   9篇
  2021年   8篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   9篇
  2013年   13篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  1998年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
81.
Oil content in grain and triacylglycerol composition of several Croatian soybean cultivars (Glycine max (L) Merrill) was investigated. Trials were conducted at two localities during three years and involved seven soybean cultivars. All investigated cultivars were created in soybean breeding program at the Agricultural Institute Osijek in Croatia. Oil content in grain was determined by NMR method. Triacylglycerols were analyzed by reversed phase high performance liquid chromatography with refractive index detector and identified by comparing their retention time to standards.Oil content was similar in soybean cultivars within year and localities but varied significantly among years. Chromatograms of every injected sample showed 15 individual triacylglycerol peaks, and the main components are trilinolein, dilinoleoolein, and dilinoleopalmitin. A small difference of triacylglycerol composition was noticed among soybean cultivars whereas larger one was noticed among the investigated years. The obtained results will be able to use in further breeding work for soybean cultivars grain quality improvement.  相似文献   
82.
We describe how reactivity can be controlled in the solid state using molecules and self-assembled metal-organic complexes as templates. Being able to control reactivity in the solid state bears relevance to synthetic chemistry and materials science. The former offers a promise to synthesize molecules that may be impossible to realize from the liquid phase while also taking advantage of the benefits of conducting highly stereocontrolled reactions in a solvent-free environment (i.e., green chemistry). The latter provides an opportunity to modify bulk physical properties of solids (e.g., optical properties) through changes to molecular structure that result from a solid-state reaction. Reactions in the solid state have been difficult to control owing to frustrating effects of molecular close packing. The high degree of order provided by the solid state also means that the templates can be developed to determine how principles of supramolecular chemistry can be generally employed to form covalent bonds. The paradigm of synthetic chemistry employed by Nature is based on integrating noncovalent and covalent bonds. The templates assemble olefins via either hydrogen bond or coordination-driven self-assembly for intermolecular [2 + 2] photodimerizations. The olefins are assembled within discrete, or finite, self-assembled complexes, which effectively decouples chemical reactivity from effects of crystal packing. The control of the solid-state assembly process affords the supramolecular construction of targets in the form of cyclophanes and ladderanes. The targets form stereospecifically, in quantitative yield, and in gram amounts. Both [3]- and [5]-ladderanes have been synthesized. The ladderanes are comparable to natural ladderane lipids, which are a new and exciting class of natural products recently discovered in anaerobic marine bacteria. The organic templates function as either hydrogen bond donors or hydrogen bond acceptors. The donors and acceptors generate cyclobutanes lined with pyridyl and carboxylic acid groups, respectively. The metal-organic templates are based on Zn(II) and Ag(I) ions. The reactivity involving Zn(II) ions is shown to affect optical properties in the form of solid-state fluorescence. The solids based on both the organic and metal-organic templates undergo rare single-crystal-to-single-crystal reactions. We also demonstrate how the cyclobutanes obtained from this method can be applied as novel polytopic ligands of metallosupramolecular assemblies (e.g., self-assembled capsules) and materials (e.g., metal-organic frameworks). Sonochemistry is also used to generate nanostructured single crystals of the multicomponent solids or cocrystals based on the organic templates. Collectively, our observations suggest that the organic solid state can be integrated into more mainstream settings of synthetic organic chemistry and be developed to construct functional crystalline solids.  相似文献   
83.
Sepsis is a life-threatening condition caused by the dysregulated and overwhelming response to infection, accompanied by an exaggerated pro-inflammatory state and lipid metabolism disturbance leading to sequential organ failure. Meldonium is an anti-ischemic and anti-inflammatory agent which negatively interferes with lipid metabolism by shifting energy production from fatty acid oxidation to glycolysis, as a less oxygen-demanding pathway. Thus, we investigated the effects of a four-week meldonium pre-treatment on faecal-induced sepsis in Sprague-Dawley male rats. Surprisingly, under septic conditions, meldonium increased animal mortality rate compared with the meldonium non-treated group. However, analysis of the tissue oxidative status did not provide support for the detrimental effects of meldonium, nor did the analysis of the tissue inflammatory status showing anti-inflammatory, anti-apoptotic, and anti-necrotic effects of meldonium. After performing tissue lipidomic analysis, we concluded that the potential cause of the meldonium harmful effect is to be found in the overall decreased lipid metabolism. The present study underlines the importance of uninterrupted energy production in sepsis, closely drawing attention to the possible harmful effects of lipid-mobilization impairment caused by certain therapeutics. This could lead to the much-needed revision of the existing guidelines in the clinical treatment of sepsis while paving the way for discovering new therapeutic approaches.  相似文献   
84.
A dysregulated and overwhelming response to an infection accompanied by the exaggerated pro-inflammatory state and metabolism disturbance leads to the fatal outcome in sepsis. Previously we showed that meldonium, an anti-ischemic drug clinically used to treat myocardial and cerebral ischemia, strongly increases mortality in faecal-induced peritonitis (FIP) in rats. We postulated that the same mechanism that is responsible for the otherwise strong anti-inflammatory effects of meldonium could be the culprit of the increased mortality. In the present study, we applied the LPS-induced model of sepsis to explore the presence of any differences from and/or similarities to the FIP model. When it comes to energy production, despite some shared similarities, it is evident that LPS and FIP models of sepsis differ greatly. A different profile of sympathoadrenal activation may account for this observation, as it was lacking in the FIP model, whereas in the LPS model it was strong enough to overcome the effects of meldonium. Therefore, choosing the appropriate model of sepsis induction is of great importance, especially if energy homeostasis is the main focus of the study. Even when differences in the experimental design of the two models are acknowledged, the role of different patterns of energy production cannot be excluded. On that account, our results draw attention to the importance of uninterrupted energy production in sepsis but also call for much-needed revisions of the current recommendations for its treatment.  相似文献   
85.
BACKGROUND: Modifications in growing techniques can affect the yield and nutritional quality of various cultivated plant species. Owing to its high nutritional value, pepper (Capsicum annuum L.) was used in this study as a model plant to investigate the effect of natural biostimulants on yield and fruit quality parameters under conditions of reduced fertilisation. RESULTS: A positive influence of biostimulant treatment on yield parameters was observed. The overall increase in the pigment content of leaves after biostimulant application agreed well with the higher total and commercial yields of treated pepper cultivars compared with their controls. The results showed that natural biostimulants had a positive effect on the vitamin C and total phenolic contents in pepper fruits during the hot summer season. The 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) and 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonate) (ABTS) antioxidant activities were also significantly higher (P < 0.05) in treated plants and correlated strongly with all measured quality parameters except total phenolic content. CONCLUSION: Generally, biostimulants improved the antioxidant activity, vitamin C and phenolic contents in fruits as well as the pigment content in leaves of treated compared with non‐treated pepper plants grown hydroponically. Thus the application of biostimulants could be considered as a good production strategy for obtaining high yields of nutritionally valuable vegetables with lower impact on the environment. Copyright © 2011 Society of Chemical Industry  相似文献   
86.
Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the Babesia genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with Babesia canis using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with B. canis and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host–pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with B. canis infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of B. canis infection.  相似文献   
87.
88.
Neural Computing and Applications - This study investigated the AISI 1040 steel turning in dry environment with four cutting inserts of different corner radii coated by CVD method. Experimental...  相似文献   
89.
Wireless Personal Communications - This paper presents a new user-centric approach in establishing reliable communication for mission and time-critical data, being able to use multiple available...  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号