全文获取类型
收费全文 | 2455篇 |
免费 | 92篇 |
国内免费 | 5篇 |
专业分类
电工技术 | 45篇 |
综合类 | 5篇 |
化学工业 | 544篇 |
金属工艺 | 43篇 |
机械仪表 | 78篇 |
建筑科学 | 56篇 |
矿业工程 | 1篇 |
能源动力 | 88篇 |
轻工业 | 118篇 |
水利工程 | 8篇 |
石油天然气 | 3篇 |
无线电 | 466篇 |
一般工业技术 | 448篇 |
冶金工业 | 263篇 |
原子能技术 | 8篇 |
自动化技术 | 378篇 |
出版年
2023年 | 13篇 |
2022年 | 41篇 |
2021年 | 52篇 |
2020年 | 29篇 |
2019年 | 33篇 |
2018年 | 53篇 |
2017年 | 44篇 |
2016年 | 52篇 |
2015年 | 41篇 |
2014年 | 90篇 |
2013年 | 188篇 |
2012年 | 141篇 |
2011年 | 155篇 |
2010年 | 118篇 |
2009年 | 150篇 |
2008年 | 153篇 |
2007年 | 137篇 |
2006年 | 98篇 |
2005年 | 82篇 |
2004年 | 75篇 |
2003年 | 69篇 |
2002年 | 65篇 |
2001年 | 49篇 |
2000年 | 43篇 |
1999年 | 47篇 |
1998年 | 107篇 |
1997年 | 85篇 |
1996年 | 43篇 |
1995年 | 38篇 |
1994年 | 34篇 |
1993年 | 28篇 |
1992年 | 33篇 |
1991年 | 29篇 |
1990年 | 12篇 |
1989年 | 5篇 |
1988年 | 11篇 |
1987年 | 8篇 |
1986年 | 6篇 |
1985年 | 11篇 |
1984年 | 14篇 |
1983年 | 5篇 |
1982年 | 8篇 |
1981年 | 10篇 |
1980年 | 6篇 |
1979年 | 4篇 |
1977年 | 7篇 |
1976年 | 8篇 |
1975年 | 5篇 |
1973年 | 6篇 |
1967年 | 3篇 |
排序方式: 共有2552条查询结果,搜索用时 11 毫秒
101.
Novel hydrogen-bonded acidic fluorinated poly(amide-imide-silica) hybrid materials, FPAI-SiO2 (6E and 6F) series, were synthesized by a sol-gel process. The structures and spin relaxation of the hybrids were characterized by infrared (IR), and 29Si and 13C nuclear magnetic resonance (NMR) spectroscopy. The abundant Q4 structures implied that in free catalyst the degree of condensation of tetramethoxysilane was enhanced by hydrogen-bonded acidic fluorinated poly(amide-imide). The dynamics on the local mobility of the hybrids was investigated by the time constant for energy exchange between 1H and 29Si spin system (TSiH) and spin-diffusion path length (L) measurements. It was found that the faster TSiH of 6E and 6F hybrids compared with the previous study of similar 6C and 6D hybrids implied that 6E and 6F hybrids had more aggregated structures even though the organic terminal segment changed from rigid imide to more flexible amide. The interactions of the charge transfer between donor and acceptor molecules or π-π aromatic stacking may be the dominant factors to affect the structures of 6E and 6F hybrids. Moreover, M1 and D2 segments of 6F hybrids had the same level mobility and the mobility of the 6F hybrids was little improved as the soft and flexible 1,3-bis(3-aminopropyl)-tetramethyl-disiloxane segment was incorporated in the dense structures of 6F hybrids. All of the L values of 6E and 6F hybrids were on the scale of 3.5-4.0 nm. The result also suggested that 6E and 6F hybrids had similar denser structures as 6D hybrids. 相似文献
102.
Ssu-Han Chen Shih-Jiuan Chiu Teh-Min Hu 《International journal of molecular sciences》2012,13(11):13985-14001
Nitric oxide (NO) is an important molecule that exerts multiple functions in biological systems. Because of the short-lived nature of NO, S-nitrosothiols (RSNOs) are believed to act as stable NO carriers. Recently, sulfhydryl (SH) containing macromolecules have been shown to be promising NO carriers. In the present study, we aimed to synthesize and characterize a potential NO carrier based on bovine Cu,Zn-superoxide dismutase (bSOD). To prepare S-nitrosated bSOD, the protein was incubated with S-nitrosoglutathione (GSNO) under varied experimental conditions. The results show that significant S-nitrosation of bSOD occurred only at high temperature (50 °C) for prolonged incubation time (>2 h). S-nitrosation efficiency increased with reaction time and reached a plateau at ~4 h. The maximum amount of NO loaded was determined to be about 0.6 mol SNO/mol protein (~30% loading efficiency). The enzymatic activity of bSOD, however, decreased with reaction time. Our data further indicate that NO functionality can only be measured in the presence of extremely high concentrations of Hg2+ or when the protein was denatured by guanidine. Moreover, mildly acidic pH was shown to favor S-nitrosation of bSOD. A model based on unfolding and refolding of bSOD during preparation was proposed to possibly explain our observation. 相似文献
103.
The objective of this research is to prepare modified unsaturated polyester resin(UPR) with good processibility, dimension stability and mechanical properties. In this study, dicyclopentadiene (DCPD) is selected as a modifier and the effect of DCPD content on the curing behavior of the modified UPR is examined via Differential Scanning Calorimetry (DSC) and Rheometrics Dynamic Analysis (RDA) experiments. The results of 1H NMR identification for the chemical structure of modified UPR show that the trans-structure of UPR decreases as the DCPD content increases. The curing time necessary to reach peak maximum in DSC during the curing reaction lengthens as the stereo obstacles formed by the binary rings increase. 相似文献
104.
The sulfone epoxy (SEP)/polyhedral oligomeric silsesquioxane (POSS) nanocomposite contains bulky POSS side chains was studied in this research. Its glass transition temperature (Tg) decreases with the bulky POSS content, indicating that the bulky POSS side chains could not only generate the oligomers but also interrupt the network architectures of SEP. Homogeneous and uniform dispersion of POSS in SEP matrix can be obtained through the carbamate/oxazolidon covalent linkage, which is evidenced by scanning electron microscopy. The increasing concentration of POSS into SEP exhibits an increase of char yield in the nanocomposites, indicating that the POSS segments provide the antithermal‐oxidation effect for SEP/POSS, thereby inhibiting thermal degradation under open air at high temperatures. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
105.
Jia‐Wei Li Yu‐Jing Chiu Chia‐Jui Chang Hung‐Chieh He Yi‐Hsuan Tu Kuan‐Ting Lin Yu‐Liang Lin Tzu‐Hsun Kao Hsun‐Hao Hsu Hsiao‐Fan Tseng Tien‐Chang Lu Jiun‐Tai Chen 《大分子材料与工程》2020,305(1)
Polyimides (PIs) possess excellent mechanical properties, thermal stability, and chemical resistance and can be converted to carbon materials by thermal carbonization. The preparation of carbon nanomaterials by carbonizing PI‐based nanomaterials, however, has been less studied. In this work, the fabrication of PI nanofibers is investigated using electrospinning and their transformation to carbon nanofibers. Poly(amic acid) carboxylate salts (PAASs) solutions are first electrospun to form PAAS nanofibers. After the imidization and carbonization processes, PI and carbon nanofibers can then be obtained, respectively. The Raman spectra reveal that the carbon nanofibers are partially graphitized by the carbonization process. The diameters of the PI nanofibers are observed to be smaller than those of the PAAS nanofibers because of the formation of the more densely packed structures after the imidization processes; the diameters of the carbon nanofibers remain similar to those of the PI nanofibers after the carbonization process. The thermal dissipation behaviors of the PI and carbon nanofibers are also examined. The infrared images indicate that the transfer rates of thermal energy for the carbon nanofibers are higher than those for the PI nanofibers, due to the better thermal conductivity of carbon caused by the covalent sp2 bonding between carbon atoms. 相似文献
106.
Jia-Wun Li Yung-Hsin Cheng Hsun-Tsing Lee Chyung-Chyung Wang Chih-Wei Chiu Maw-Cherng Suen 《应用聚合物科学杂志》2020,137(36):49062
This study successfully incorporated a short-segment fluorine-containing chain extender (2,2,3,3-tetrafluoro-1,4-butanediol [TF]) into castor oil-based polyurethane (COPU) to synthesize TF/COPUs. The interactions between TF and COPU components were identified by Fourier transform infrared and X-ray photoelectron spectroscopies, the results revealed that the increase in the TF content increased the van der Waals forces in C F…CO and the hydrogen bonding force in C F…H N. Atomic force microscopy indicated that the addition of more TF contributed to a higher level of microphase separation in the TF/COPUs. Thermogravimetric analysis showed that the TF component can enhance the thermal resistance of TF/COPUs. Differential scanning calorimetry and dynamic mechanical analysis indicated that the glass transition temperature (Tg) of TF/COPUs increased with the TF content. The stress–strain testing showed that the tensile strength and elongation at break values decreased with the TF content. This tensile behavior may be due to the molecular weight of a TF/COPU decreased with the TF content as evidenced by the gel permeation chromatography results. The hydrolytic degradation tests of dipping TF/COPUs in 3 wt% NaOH solution indicated that TF could lower the surface free energy and enhance the degradation stability of TF/COPUs. 相似文献
107.
Shih-Chieh Chang Shih-Jiuan Chiu Chih-Yuan Hsu Yung Chang Ying-Ling Liu 《Polymer》2012,53(20):4399-4406
Rhodamine B (RhB)-anchored amphiphilic poly(poly(ethylene glycol)methacrylate)-b-poly(glycidyl methacrylate) block copolymer (PPEGMA-b-PGMA/RhB) has been prepared by a sequential atom transfer radical polymerization and post-functionalization of RhB. The chemical structure of PPEGMA-b-PGMA/RhB is characterized with gel-permeation chromatography, Fourier-transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. PPEGMA-b-PGMA/RhB has shown self-assembly behaviors in tetrahydrofuran and aqueous solutions. The RhB aggregation induced with the inter-molecular interaction of RhB results in the various core–shell structures of the assembled nanoparticles. The photoluminescent properties of the PPEGMA-b-PGMA/RhB nanoparticles are structure-dependent and exhibit yellow-light, blue-light, and white-light emissions. The fluorescent organic nanoparticles of PPEGMA-b-PGMA/RhB in aqueous solution show low cytotoxicity and have been used as a bio-dye for cell labelling. Internalization of PPEGMA-b-PGMA/RhB nanoparticles into HELA cells to exhibit fluorescent images has been demonstrated. 相似文献
108.
Preparation and characterization of methoxy‐poly(ethylene glycol) side chain grafted onto chitosan as a wound dressing film 下载免费PDF全文
Cheng‐Han Yang Szu‐Hsien Chen Yun‐Wen Pan Ching‐Nan Chuang Wen‐Chi Chao Tai‐Horng Young Wen‐Yen Chiu Chih‐Kuang Wang Kuo‐Huang Hsieh 《应用聚合物科学杂志》2015,132(31)
Chitosan has received extensive attention as a biomedical material; however, the poor solubility of chitosan is the major limiting factor in its utilization. In this study, chitosan‐based biomaterials with improved aqueous solubility were synthesized. Two molecular weights (750 Da and 2000 Da) of methoxypoly(ethylene glycol) (mPEG) were grafted onto chitosan (mPEG‐g‐chitosan) to form a ~100‐μm‐thick plastic film as a wound dressing. The chemical structures of the mPEG‐g‐chitosan copolymers were confirmed using Fourier transform infrared spectroscopy (FTIR), and the thermal properties were characterized using thermogravimetry analysis (TGA). Their microstructures were observed using scanning electron microscopy (SEM). The other properties were analyzed via the swelling ratio, tensile strength, elongation, and water vapor transmission rate (WVTR). Biocompatibility evaluations through biodegradability, cytotoxicity, and antimicrobial effect studies were also performed. The obtained mPEG‐g‐chitosan copolymers were soluble in slightly acidic aqueous solutions (pH~6.5) at a concentration of 10 wt %. The optimal mPEG‐g‐chitosan hydrogels had swelling ratios greater than 100% and WVTRs greater than 2000 g/m2/day. Their performance against Staphylococcus aureus will be subjected to further improvements with respect to medical applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42340. 相似文献
109.
The effects of oxidation and particle shape on critical volume fractions of silver‐coated copper powders in conductive adhesives are investigated. Silver‐coated copper powders with spherical and flake‐shaped particles were oxidized at temperatures of 30°C, 175°C and 240°C for two hours and dispersed in an epoxy matrix. As silver‐coated copper powders are oxidized at 30°C and 175°C, the critical volume fractions of the conductive adhesives are slightly affected by oxidation and particle shape at these temperatures. As the oxidation temperature approaches 240°C, the critical volume fractions of the conductive adhesives are strongly affected by oxidation temperature and particle shape, owing to the formation of oxides such as Cu2O on the surface of silver‐coated copper powder—Cu diffuses from the interior to the surface of silver‐coated copper powder and reacts with the oxygen in the air. Silver‐coated copper powder with flake‐shaped particles shows lower critical volume fractions in conductive adhesives than silver‐coated copper powder with spherically shaped particles. Polym. Eng. Sci. 44:2075–2082, 2004. © 2004 Society of Plastics Engineers. 相似文献
110.
Nanotechnology has been successfully implemented in many applications, such as nanoelectronics, nanobiomedicine, and nanodevices. However, this technology has rarely been applied to the oil and gas industry, especially in upstream exploration and production. The oil and gas industry needs to improve oil recovery and exploit unconventional resources. The cost of research and oil production is under immense pressure, and it is becoming more difficult to justify such investment when the crude oil price is weak and depressed. There is a widespread belief that nanotechnology may be exploited to develop novel nanomaterials with enhanced performance to combat these technological barriers. Increasing funding resources from governmental and global oil industry have been allocated to exploration, drilling, production, refining, and wastewater treatment. For example, nanosensors allow for precise measurement of reservoir conditions. Nanofluids prepared using functional nanomaterials may exhibit better performance in oil production processes, and nanocatalysts have improved the efficiency in oil refining and petrochemical processes. Nanomembranes enhance oil, water and gas separation, oil and gas purification, and the removal of impurities from wastewater. Functional nanomaterials can play an important role in the production of smart, reliable, and more durable equipment. In this review paper, we summarize the research progress and prospective applications of nanotechnology and nanomaterials in the oil and gas industry. 相似文献