首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   18篇
  国内免费   1篇
电工技术   1篇
综合类   2篇
化学工业   93篇
金属工艺   3篇
机械仪表   8篇
建筑科学   6篇
能源动力   25篇
轻工业   32篇
水利工程   2篇
石油天然气   4篇
无线电   43篇
一般工业技术   72篇
冶金工业   28篇
原子能技术   3篇
自动化技术   59篇
  2024年   4篇
  2023年   5篇
  2022年   21篇
  2021年   36篇
  2020年   11篇
  2019年   24篇
  2018年   30篇
  2017年   24篇
  2016年   20篇
  2015年   11篇
  2014年   16篇
  2013年   21篇
  2012年   21篇
  2011年   20篇
  2010年   14篇
  2009年   20篇
  2008年   7篇
  2007年   8篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1998年   4篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
排序方式: 共有381条查询结果,搜索用时 0 毫秒
61.
Umar A  Karunagaran B  Suh EK  Hahn YB 《Nanotechnology》2006,17(16):4072-4077
The growth of perfectly hexagonal-shaped ZnO nanorods, with Zn-terminated (0001) facets bounded with [Formula: see text] surfaces, has been performed on nickel-coated Si(100) substrate via thermal evaporation using metallic zinc powder and oxygen. Detailed structural investigations confirmed that the synthesized nanorods are single crystalline with the wurtzite hexagonal phase and preferentially grow along the c-axis direction. Raman spectra of the as-grown ZnO nanorods showed an optical-phonon E(2) mode at 438?cm(-1), indicating that as-grown nanostructures are in good crystallinity with the wurtzite hexagonal phase. The ZnO nanorods were found to show strong band edge emission with very weak or no deep-level emission, as shown by photoluminescence measurements. The clear observation of free excitons at low temperatures (13-50?K) indicates that the as-grown ZnO nanorods are of high quality.  相似文献   
62.
A comparative study of the influence of processing route on polyurethanes (PUs)/multiwalled carbon nanotube (MWCNT) composites mechanical and electrical properties and also morphology was undergone employing two differentiated processing methods, solvent casting and buckypaper infiltration, for producing PU composites with low, medium and high mass fractions of acid treated MWCNT, and with no covalent linkages between the matrix and the nanotubes. As for example, with a MWCNT mass fraction of ∼18 wt.% the second method produced stiffer (270 MPa), lighter (948 kg m−3) and more electrically conductive (1.8 S cm−1) composite while the first one gave softer (111 MPa) and more ductile (141%) materials. These properties differences are related to the different PU/MWCNT dispositions obtained through each synthesis route. Nanotubes percolating concentration is found to be crucial on composite properties evolution and a preferential interaction of MWCNT with PU hard segments is observed for solvent cast composites.  相似文献   
63.
Technological advances have led to increased constraints regarding food packaging, mainly due to environmental issues, consumer health concerns, and economic restrictions associated therewith. Hence, food scientists and technologists are now more focused on developing biopolymer packages. Starch satisfies all the principal aspects making it a promising raw material for edible coatings/films. Modified starch has grabbed much attention, both at the academic as well as at the industrial level, because these films exhibit dramatic improvement in filming properties without involving any significant increase in cost of production. Various methods, additives used, and recent advances in the field of starch film production are discussed in detail in this review, which also provides an overview of the available information along with recent advances in modified starch film packaging.  相似文献   
64.
Single‐walled carbon nanotubes are grafted with polystyrene chains employing a graft‐to protocol. Thermogravimetric analysis allows calculation of the grafted chain density and average interchain separation on the nanotube surface as a function of molecular weight. The separation scales with molecular weight as a power law with an exponent of ca. 0.588, showing the grafted chains to be in a swollen random walk conformation. This implies that chain packing is controlled by coil size in solution. In addition, the dispersed concentration of functionalized nanotubes scales with the size of the steric potential barrier that prevents aggregation of polymer functionalized nanotubes. It is also shown that the molecular weight of the grafted chains significantly affects the mechanical properties of nanotube films.  相似文献   
65.
66.
Although several treatments for tendon lesions have been proposed, successful tendon repair remains a great challenge for orthopedics, especially considering the high incidence of re‐rupture of injured tendons. Our aim was to evaluate the pharmacological potential of Aloe vera on the content and arrangement of glycosaminoglycans (GAGs) during tendon healing, which was based on the effectiveness of A. vera on collagen organization previously observed by our group. In rats, a partial calcaneal tendon transection was performed with subsequent topical A. vera application at the injury site. The tendons were treated with A. vera ointment for 7 days and excised on the 7th, 14th, or 21st day post‐surgery. Control rats received ointment without A. vera. A higher content of GAGs and a lower amount of dermatan sulfate were detected in the A. vera‐treated group on the 14th day compared with the control. Also at 14 days post‐surgery, a lower dichroic ratio in toluidine blue stained sections was observed in A. vera‐treated tendons compared with the control. No differences were observed in the chondroitin‐6‐sulfate and TGF‐β1 levels between the groups, and higher amount of non‐collagenous proteins was detected in the A. vera‐treated group on the 21st day, compared with the control group. No differences were observed in the number of fibroblasts, inflammatory cells and blood vessels between the groups. The application of A. vera during tendon healing modified the arrangement of GAGs and increased the content of GAGs and non‐collagenous proteins. Microsc. Res. Tech. 77:964–973, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
67.
This article reports a facile growth of well-crystalline aligned hexagonal ZnO nanorods on fluorine-doped tin-oxide (FTO) substrate via non-catalytic thermal evaporation process. The morphological investigations done by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM) reveal that the grown products are aligned hexagonal ZnO nanorods which are grown in a very high density over the whole substrate surface. The detailed structural properties observed by high-resolution TEM equipped with selected area electron diffraction (SAED) and X-ray diffraction (XRD) pattern confirmed that the synthesized nanorods are well-crystalline possessing wurtzite hexagonal phase and preferentially grown along the c-axis direction. A sharp and strong UV emission at 381 nm in room-temperature photoluminescence (PL) spectrum showed that the as-grown ZnO nanorods possess excellent optical properties. The as-grown nanorods were used as photo-anode for the fabrication of dye-sensitized solar cells (DSSCs) which exhibits an overall light-to-electricity conversion efficiency (ECE) of 0.7% with V(oc) of 0.571 V, J(sc) of 2.02 mA/cm2 and FF of 0.58.  相似文献   
68.
In this paper, the high-yield facile synthesis, detailed characterization and photocatalytic application of alpha-Fe2O3 nanoparticles are reported. The synthesis was done via simple hydrothermal process by using aqueous mixtures of iron chloride, hexamethylenediamine and NH3 x H2O at 110 degrees C. The morphologies of the synthesized products were examined by using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) which confirmed that the synthesized structures are almost spherical shaped nanoparticles with the average diameters of -35 +/- 5 nm, and are grown in high yield. The detailed structural characterizations and composition of the as-synthesized nanoparticles were investigated by using X-ray diffraction (XRD), high-resolution TEM (HRTEM), energy dispersive spectroscopy (EDS) attached with FESEM and Fourier transform infrared spectroscopy (FTIR) which substantiated that the as-synthesized nanoparticles are well crystalline and pure alpha-Fe2O3. The UV-Vis absorption spectrum of the synthesized nanoparticles demonstrated the existence of two optical band gaps which correspond to direct and indirect transitions, respectively. The as-synthesized alpha-Fe2O3 nanoparticles exhibit good photocatalytic properties on photocatalytic degradation of methylene blue.  相似文献   
69.
A commercial thermoplastic polyurethane is identified for which the addition of nanotubes dramatically improves its mechanical properties. Increasing the nanotube content from 0% to 40% results in an increase in modulus, Y, (0.4–2.2 GPa) and stress at 3% strain, σ? = 3%, (10–50 MPa), no significant change in ultimate tensile strength, σB, (≈50 MPa) and decreases in strain at break, ?B, (555–3%) and toughness, T, (177–1 MJ m?3). This variation in properties spans the range from compliant and ductile, like an elastomer, at low mass fractions to stiff and brittle, like a rigid thermoplastic, at high nanotube content. For mid‐range nanotube contents (≈15%) the material behaves like a rigid thermoplastic with large ductility: Y = 1.5 GPa, σ? = 3% = 36 MPa, σB = 55 MPa, ?B = 100% and T = 50 MJ m?3. Analysis suggests that soft polyurethane segments are immobilized by adsorption onto the nanotubes, resulting in large changes in mechanical properties.  相似文献   
70.
Bioactive metal cobalt containing sunflower oil‐based polyesteramide resin was developed by condensation polymerization reaction among oil‐derived sunflower fatty amide diol, adipic acid, and cobalt chloride. Microwave‐assisted synthesis was used throughout the reaction as it enhances reaction rate, gives higher yield, and greater purity of the products. Spectroscopic techniques, such as Fourier transform infrared spectroscopy and proton‐nuclear magnetic resonance, have been used to establish the structure of the polymers. Presence of cobalt in polymer has been confirmed through atomic absorption spectroscopy. Standard laboratory methods such as acid value, hydroxyl value, saponification value, iodine value, specific gravity, and viscosity were used to study the physicochemical characteristics of the polymers. Thermal behavior of the polymer was analyzed using thermogravimetry/differential thermal analysis. The synthesized polymers were evaluated for their biological activity. This study indicates that the synthesized polymer has significant antifungal activity against Candida, including azole‐resistant strains, advocating further investigation for clinical applications in the treatment of fungal infections. POLYM. ENG. SCI., 53:2650–2658, 2013. © 2013 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号