首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1199篇
  免费   104篇
  国内免费   3篇
电工技术   20篇
综合类   3篇
化学工业   286篇
金属工艺   49篇
机械仪表   70篇
建筑科学   40篇
矿业工程   1篇
能源动力   58篇
轻工业   104篇
水利工程   22篇
石油天然气   22篇
无线电   160篇
一般工业技术   212篇
冶金工业   49篇
原子能技术   13篇
自动化技术   197篇
  2024年   2篇
  2023年   21篇
  2022年   33篇
  2021年   69篇
  2020年   53篇
  2019年   86篇
  2018年   78篇
  2017年   102篇
  2016年   81篇
  2015年   56篇
  2014年   78篇
  2013年   137篇
  2012年   89篇
  2011年   96篇
  2010年   72篇
  2009年   53篇
  2008年   44篇
  2007年   26篇
  2006年   16篇
  2005年   16篇
  2004年   7篇
  2003年   16篇
  2002年   11篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   9篇
  1997年   6篇
  1996年   7篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1306条查询结果,搜索用时 328 毫秒
51.
The development of desirable chemical structures and properties in nanocomposite membranes involve steps that need to be carefully designed and controlled. This study investigates the effect of adding multiwalled nanotubes (MWNT) on a Kapton–polysulfone composite membrane on the separation of various gas pairs. Data from Fourier transform infrared spectroscopy and scanning electron microscopy confirm that some studies on the Kapton–polysulfone blends are miscible on the molecular level. In fact, the results indicate that the chemical structure of the blend components, the Kapton–polysulfone blend compositions, and the carbon nanotubes play important roles in the transport properties of the resulting membranes. The results of gas permeability tests for the synthesized membranes specify that using a higher percentage of polysulfone (PSF) in blends resulted in membranes with higher ideal selectivity and permeability. Although the addition of nanotubes can increase the permeability of gases, it decreases gas pair selectivity. Furthermore, these outcomes suggest that Kapton–PSF membranes with higher PSF are special candidates for CO2/CH4 separation compared to CO2/N2 and O2/N2 separation. High CH4, CO2, N2, and O2 permeabilities of 0.35, 6.2, 0.34, and 1.15 bar, respectively, are obtained for the developed Kapton–PSF membranes (25/75%) with the highest percentage of carbon nanotubes (8%), whose values are the highest among all the resultant membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43839.  相似文献   
52.
The mechanisms of cell nucleation and growth are investigated in foam injection molding (FIM) using gas‐counter pressure (GCP). An in‐situ mold visualization technique is employed. The application of GCP suppresses cell nucleation, and prevents the blowing agent from escaping during mold‐filling. The inherent structural heterogeneity in the regular FIM can be improved because of the uniform cavity pressure when employing GCP. The cavity pressure profiles show much faster pressure‐drop rates using GCP, because the single‐phase polymer/gas mixture has a lower compressibility than the two‐phase polymer/bubble mixture. Therefore, both the cell nucleation and growth rates are significantly increased through a higher pressure‐drop rate on the removal of the GCP. The effect of GCP magnitude on the cell morphology is explored. When the GCP is lower than the solubility pressure, bimodal foaming occurs. As the GCP increases above the solubility pressure, the cell density increases because of the higher pressure‐drop rate. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4035–4046, 2016  相似文献   
53.
Electro-osmosis is an established method of dewatering fine soils, sediments, and sludge (SSS). The efficiency of electro-osmotic treatment is controlled by the electrical resistance of the system. Due to an increase in SSS resistance during treatment, its cost efficiency is reduced, limiting the widespread use of this technique. The aim of this paper is to discuss the main reasons for the increase in SSS resistance during treatment and then to analyze the most recent and widely spread modifications to classical electro-osmotic treatment that attempt to combat these issues and improve the efficiency of the technique. These modifications to electro-osmotic treatment are polarity reversal, an intermittent current, the injection of chemical solutions at the electrodes, and the use of geo-synthetics. The paper discusses the relevant research on the above adaptations, and the advantages and disadvantages of each are evaluated and compared using the available laboratory and field tests in the literature on electro-osmotic dewatering research. All four methods of modification are shown to provide significant improvements and can be successfully translated to the field for greater use. However, the improvements they bring about may not be sufficient to warrant their general use in geotechnical applications.  相似文献   
54.
Carum copticum and Ferula assafoetida have several medicinal properties including antispasmodic, carminative, sedative, analgesic, and antiseptic. Reactive oxygen species (ROS), reactive nitrogen species (RNS), hydrogen peroxide (H2O2), and thiobarbituric acid reactive substances (TBARS) scavenging activities of Carum and Ferula oils along with their antibacterial and antifungal activities were examined. Thymol (40.25%), γ‐terpinene (38.7%) and p‐cymene (15.8%) were detected as the main components of Carum oil while, β‐pinene (47.1%), α‐pinene (21.36%), and 1, 2‐dithiolane (18.6%) were the main components of Ferula oil. Inhibitory concentrations (IC50) for total radical scavenging were between 40 and 60 and 130 and 160 μg/mL of Carum and Ferula oil, respectively. Minimal inhibitory concentration (MIC) for Salmonella typhi, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Aspergillus niger, and Candida albicans were 78 ± 8, 65 ± 7, 14 ± 3, 5 ± 2, 5.6 ± 1.3, and 8.8 ± 2.2 μg/mL of Carum oil, respectively. MIC for S. typhi, E. coli, S. aureus, B. subtilis, A. niger, and C. albicans were >200, >200, 125 ± 17, 80 ± 12, 85 ± 5, and 90 ± 11 μg/mL of Ferula oil, respectively. Accordingly, Carum and Ferula oils could be used as safe and effective natural antioxidants to improve the oxidative stability of fatty foods during storage and to preserve foods against food burn pathogens. Practical Application : This study clearly demonstrates the potential of Carum and Ferula oil especially Carum oil as natural antioxidant and antimicrobial agent. The chemical composition of essential oils was identified. Thus, identification of such compounds also helps to discover of new antioxidant, antibacterial and antifungal agents for potential applications in food safety and food preservation.  相似文献   
55.
56.
In this study, we compare the preparation of ovalbumin (OVA) and α‐lactalbumin (α‐LA) nanoparticles using different desolvating agents (ethanol, acetone, and methanol) and water: desolvating agent volume ratios (1:3, 1:4, 1:5, 1:10, and 1:20). Also the effects of protein solution temperature (25, 50, and 80 ℃) on the size of nanoparticles and the stability of crosslinked nanoparticles for 30 d were studied. OVA and α‐LA were shown to be good candidates for nanoparticulation and nanoparticles in the range of 60 to 230 nm were obtained. The comparison between the 2 proteins offers guidance to optimize OVA and α‐LA nanoparticle fabrication and to efficiently obtain nanoparticles with desired characteristics. The particle sizes of OVA nanoparticles were found to be in the range of 60 to 160 nm, and the particle sizes of α‐LA were between 150 and 230 nm. The sizes varied with different desolvating agents: for OVA, ethanol, and methanol both produced nanoparticles smaller than 100 nm; for α‐LA, methanol produced the smallest nanoparticles. Water: desolvating agent ratios, in the studied range, did not show a significant effect on the particle sizes for both OVA and α‐LA nanoparticles. The size and morphology of the nanoparticles were found to change when the protein solutions were heated up to 50 and 80 ℃ and cooled down before nanoparticulation and most nanoparticles had a smaller diameter.  相似文献   
57.
M. Alireza Sadeghi 《LWT》2006,39(8):911-917
A process for the preparation of mustard protein isolate, comprising steps such as dispersion of defatted meal in 0.1 mol/l NaCl solution, incubation, extraction at alkaline pH, followed by treatment of the protein solution with activated carbon was developed. The protein, coagulated by steam injection, was subjected to separation by centrifugation, washing and spray drying. The parameters evaluated were protein yield, purity, presence of antinutritional factors and nutritional quality of proteins. The protein yield was 58-60%. The purity of the protein isolate was 95%. The hydrolysed products of glocosinolates like isothiocyanates and oxazolidine thione levels, phenolics and phytic acid levels were low in the protein isolate. The in vitro digestibility of the protein isolate was 92.4% compared to 80.6% of the meal. Chemical score of the meal and protein isolate were similar; isoleucine was the first limiting amino acid. The calculated nutritional indices, essential amino acid index, biological value, nutritional index and C-PER of protein isolate were higher compared to meal. The protein quality as indicated by amino acid profile and PDCAAS scores for 10-12-years old and adults were 100.  相似文献   
58.
The novel conductive nanocomposite has been successfully prepared by emulsion polymerization. First, magnetite nanoparticles were synthesized via coprecipitation reaction. Then, poly (indole-co-thiophene)@Fe3O4 nanocomposite was prepared via emulsion copolymerization of indole and thiophene monomers using sodium dodecyl sulfate as an emulsifier and ammonium persulfate as an oxidant in the presence of Fe3O4 nanoparticles. Characterization of the synthesized copolymer, Poly (In-co-T), and its magnetic nanocomposite were studied by Fourier transform infrared spectra, X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, differential scanning calorimetric, UV-vis spectrophotometer, and vibrating sample magnetometer. Also, the electrical conductivity of copolymer and nanocomposite were determined by four-probe instrument. Results showed a synergic effect in thermal stability by good interaction between polymer chain and magnetic nanoparticles. The conductivity of the nanocomposite was higher than bare copolymer, and increase of nanoparticles content caused an increment in the conductivity of the nanocomposites. The applicable properties of proposed conductive nanocomposite as a base at electrochemical biosensing have been investigated.  相似文献   
59.
In this article, the catalytic conversion of methanol to gasoline range hydrocarbons has been studied over CuO/ NH4‐ZSM‐5(3,5,7,9%) catalysts prepared via sono‐chemistry methods. In order to improve, copper oxide can be used as a booster on NH4‐ZSM‐5 this catalyst property. Accordingly, the conversion process of Methanol to Gasoline (MTG) was conducted under a pressure of 1 atm and temperature of 400°C by a fixed‐bed reactor on copper oxide catalysts which were prepared based on synthetic NH4‐ZSM‐5. The synthetic catalyst was investigated by such analyses as BET, XRD, FT‐IR, and SEM. Formation of copper oxide phase and proper distribution of copper oxide were proven on the basic level of using XRD analysis. BET analysis showed the reduction in catalyst level and SEM images depicted the proper distribution of particles. The present investigation is to study the effect of CuO loading on NH4‐ZSM‐5 support for conversion of methanol to gasoline range hydrocarbons. A series of CuO/ NH4‐ZSM‐5 catalysts were prepared, characterized, and experimented for their performance on methanol conversion and hydrocarbon yield.  相似文献   
60.
从1994年北岭地震中可看到,栓焊节点的抗震性能较差。因此,常用于工业建筑和高层建筑中的抗弯框架多采用端板连接和T型螺栓连接。采用有限元方法,通过改变螺栓的纵横布置对比了14个试件的滞回性能。结果表明:假定两者总的耗能能力相同,则T型螺栓连接的抗弯能力和初始转动刚度均比基于AISC规范设计的端板螺栓连接高。在往复荷载作用下,螺栓布置的改变对T型螺栓连接破坏模式的影响要大于端板连接,端板连接更适用于具有初始几何缺陷的结构。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号