首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97179篇
  免费   2028篇
  国内免费   441篇
电工技术   918篇
综合类   2381篇
化学工业   14618篇
金属工艺   5044篇
机械仪表   3418篇
建筑科学   2751篇
矿业工程   619篇
能源动力   1599篇
轻工业   6508篇
水利工程   1403篇
石油天然气   458篇
武器工业   3篇
无线电   9924篇
一般工业技术   18633篇
冶金工业   3658篇
原子能技术   355篇
自动化技术   27358篇
  2023年   143篇
  2022年   298篇
  2021年   571篇
  2020年   423篇
  2019年   450篇
  2018年   14907篇
  2017年   13890篇
  2016年   10524篇
  2015年   1068篇
  2014年   845篇
  2013年   1461篇
  2012年   4050篇
  2011年   10353篇
  2010年   9005篇
  2009年   6284篇
  2008年   7449篇
  2007年   8358篇
  2006年   664篇
  2005年   1561篇
  2004年   1455篇
  2003年   1482篇
  2002年   833篇
  2001年   307篇
  2000年   389篇
  1999年   255篇
  1998年   438篇
  1997年   308篇
  1996年   227篇
  1995年   166篇
  1994年   116篇
  1993年   94篇
  1992年   62篇
  1991年   66篇
  1990年   36篇
  1989年   34篇
  1988年   44篇
  1985年   33篇
  1984年   45篇
  1983年   47篇
  1976年   40篇
  1968年   45篇
  1967年   36篇
  1966年   44篇
  1965年   45篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 750 毫秒
991.
使用自制的含Sc、Ce、Be的TiB2原位增强与4047焊丝为填充材料对T6态SiCp/AlMMCs 进行TIG焊,对接头的力学性能、显微组织以及断口形貌和第二相粒子进行分析。结果表明:两种焊丝焊接该种材料的焊缝成型优良,4047焊丝成型更加美观;TiB2接头的抗拉强度明显优于ER4047接头,平均强度达到171.88MPa,相对于4047接头强度提高40.03%,TiB2粒子起到了原位增强的作用;两种接头的硬度值在焊缝中心近似呈对称分布,焊缝区硬度最低,平均值分别为:71.65HV、60.02HV,热影响区硬度的“过时效”现象明显;焊缝中SiC颗粒较少,存在严重贫瘠区 ,未发现明显的Al4C3脆性物;显微组织都为枝晶组织,但4047接头焊缝枝晶粗大,TiB2接头焊缝晶粒细小,稀土元素Sc、Ce、Be起到了细化晶粒的作用,且TiB2粒子在焊缝中分布均匀;TiB2接头断口中气孔较少,为韧-脆性混合性断裂,韧窝中第二相粒子较多;4047接头断口中气孔较多,为韧性断裂,韧窝中第二相粒子较少。  相似文献   
992.
Improvement of wear resistance of plasma-sprayed molybdenum blend coatings   总被引:3,自引:0,他引:3  
The wear resistance of plasma sprayed molybdenum blend coatings applicable to synchronizer rings or piston rings was investigated in this study. Four spray powders, one of which was pure molybdenum and the others blended powders of bronze and aluminum-silicon alloy powders mixed with molybdenum powders, were sprayed on a low-carbon steel substrate by atmospheric plasma spraying. Microstructural analysis of the coatings showed that the phases formed during spraying were relatively homogeneously distributed in the molybdenum matrix. The wear test results revealed that the wear rate of all the coatings increased with increasing wear load and that the blended coatings exhibited better wear resistance than the pure molybdenum coating, although the hardness was lower. In the pure molybdenum coatings, splats were readily fractured, or cracks were initiated between splats under high wear loads, thereby leading to the decrease in wear resistance. On the other hand, the molybdenum coating blended with bronze and aluminum-silicon alloy powders exhibited excellent wear resistance because hard phases such as CuAl2 and Cu9Al4 formed inside the coating.  相似文献   
993.
The flame spraying process, which is a common industrial thermal spraying application, has been analyzed by means of three-dimensional computational fluid dynamics (CFD) simulations. The process used at the Volvo Aero Corporation for the coating of fan and compressor housings has been modeled. The process uses the Metco 6P torch (Metco, Westbury, NY), which ejects a mixture of acetylene and oxygen at high speed through a ring of 16 orifices to form the flame. A stream of argon gas flowing through an orifice in the center of the ring carries a powder of nickel-covered bentonite through the flame to the spray substrate. The torch is cooled by a flow of air through an outer ring of 9 orifices. The simulation emulated reality closely by including the individual inlets for fuel, cooling air, and injected particles. The gas combustion was simulated as a turbulent, multicomponent chemically reacting flow. The standard, two-equation k-ε turbulence model was used. The chemical reaction rates appeared as source terms in the species transport equations. They were computed from the contributions of the Arrhenius rate expressions and the Magnussen and Hjertager eddy dissipation model. The first simulations included several intermediate chemical substances whose predicted concentration agreed favorably with measurements. Later, more simplified simulations incorporated only the global chemical reaction involving the initial and the final products, with corrections to the thermal properties being made to account for the missing intermediaries. The gas velocity and temperature fields predicted by the later simulations compared satisfactorily to those predicted by the earlier, more elaborate, ones. Therefore, the final simulations, which incorporated injected particles, were conducted employing the simplified model with only the global reaction. An in-house finite difference code was developed to calculate particle properties. Allowance was made for elliptical shapes, phase changes, and internal heat transfer with regard to the composite material. The particle velocities and temperatures predicted by the final simulations compared fairly well with experimental results obtained with the optical DPV2000 system.  相似文献   
994.
Shape memory alloys (SMA) suffer from the same impairing mechanisms experienced during cycling loading by classic alloys. Moreover, SMA fatigue behavior is greatly influenced by thermomechanical cycling through the zone of thermoelastic phase transformation, which is the basis of shape memory and superelasticity effects. Since the fatigue resistance of any material can be improved by an appropriate thermomechanical treatment, in the present work combined differential scanning calorimetry and microhardness testing were used to determine an optimum annealing temperature for the cold-worked Ni-50.1%Ti alloy. The optimization is based on the assumption that latent heat of transformation is proportional to the mechanical work generated by SMA upon heating, while material hardness is related to the yield stress of the material. It is supposed that an optimum trade-off in these two properties guarantees the best dimensional and functional stability of SMA devices. The level and stability of the mechanical work generated by the material during low-cycle fatigue testing are considered criteria for the material performance and thus of the validity of the proposed optimization procedure.  相似文献   
995.
Mg-Al-Sr-based alloys (AJ alloys) have shown superior creep performance and tensile strength at temperatures as high as 175° with stresses up to 70 MPa. Mg-6Al-2.4Sr (AJ62x) exhibits an optimum combination of creep resistance and excellent castability, while AJ62Lx (strontium <2.1) has better ductility than other AJ formulations. The AJ alloy microstructure is characterized by the Al4Sr-α(Mg) lamellar phase that forms at the interdendritic/grain boundary region of the primary magne sium matrix. Mg-5Al-2Sr (AJ52x) contains a ternary phase that was tentatively named Al3Mg13Sr. When the strontium level is low in AJ62x, the volume fraction of Al4Sr is reduced, the aluminum supersaturation of the magnesium primary phase increases, and Mg17Al12 forms. In this article, a mechanism is proposed whereby the creep resistance decreases with the strontium level but the tensile strength and ductility increase. For more information, contact Eric Baril, Noranda, Noranda Technologies Centre, 240 Hymus Pointe-Claire (Montréal), Québec, H9R 1G5 Canada; (514) 630-9347; fax (514) 630-9379; e-mail eric.baril@ntc.noranda.com.  相似文献   
996.
997.
A study of the internal oxidation of dilute Ni–Al alloys in an NiO/Ni Rhines pack was performed at 800, 1000, and 1100°C. Considerable deviations from the classical internal oxidation model have been observed. The rate of internal oxidation depends not only on the concentration of the alloying element but also on its nature, which contributes to determining the size, shape, orientation and distribution of the internal oxide precipitates. For instance, the precipitates in the Ni–Al alloys are continuous rods, arranged in a cone-shaped configuration that extends from the surface to the internal oxide front. The observed depths of internal oxidation for the various concentrations of aluminum are discussed and related to the morphologies of the internal oxide precipitates. The apparent N(s) oDo values determined from internal oxide penetrations increase with increasing solute content in the alloy. It is postulated that diffusivity of oxygen is enhanced along the internal oxide–metal matrix interface compared with that in the metal matrix.  相似文献   
998.
The need for new, improved solder alloys and a better understanding of reactions during the soldering process grows steadily as the need for smaller and more reliable electronic products increases. Information obtained from phase equilibria data and thermodynamic calculations has proven to be an important tool in the design and understanding of new lead-free solder alloys. A wide range of candidate alloys can be rapidly evaluated for proper freezing ranges, susceptibility to contamination effects, and reactions with substrate materials before the expensive process of preparing and testing candidate alloys is initiated.  相似文献   
999.
The use of severe plastic deformation techniques in grain refinement   总被引:3,自引:0,他引:3  
Severe plastic deformation (SPD) has emerged as a promising method to produce ultrafine-grained materials with attractive properties. Today, SPD techniques are rapidly developing and are on the verge of moving from lab-scale research into commercial production. This paper discusses new trends in the development of SPD techniques suchas high-pressure torsion and equal-channel angle pressing, as well as new alternative techniques for introducing SPD. The paper also contains a comparative analysis of SPD techniques in terms of their relative capabilities for grain refinement, enhancement of properties, and potential to economically produce ultrafine-grained metals and alloys. For more information, contact Terry C. Lowe, Science and Technology Base Programs, Los Alamos National Laboratory, Los Alamos, NM 87545; (505) 667-7824; fax (505) 665-3199; e-mail tlowe@lanl.gov.  相似文献   
1000.
Heat flow at the casting/mold interface was assessed and studied during solidification of Al-Cu-Si (LM 21) alloy in preheated cast iron molds of two different thicknesses, coated with graphite and alumina based dressings. The casting and the mold were instrumented with thermocouples connected to a computer controlled temperature data acquisition system. The thermal history at nodal locations in the mold and casting obtained during experimentation was used to estimate the heat flux by solving the one-dimensional inverse heat conduction problem. The cooling rate and solidification time were measured using the computer-aided cooling curve analysis data. The estimated heat flux transients showed a peak due to the formation of a stable solid shell, which has a higher thermal conductivity compared with the liquid metal in contact with the mold wall prior to the occurrence of the peak. The high values of heat flux transients obtained with thin molds were attributed to mold distortion due to thermal stresses. For thin molds, assumption of Newtonian heating yielded reliable interfacial heat transfer coefficients as compared with one-dimensional inverse modeling. The time of occurrence of peak heat flux increased with a decrease in the mold wall thickness and increase in the casting thickness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号