首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2369篇
  免费   155篇
  国内免费   1篇
电工技术   7篇
化学工业   1058篇
金属工艺   21篇
机械仪表   41篇
建筑科学   77篇
矿业工程   5篇
能源动力   41篇
轻工业   566篇
水利工程   15篇
石油天然气   7篇
无线电   82篇
一般工业技术   293篇
冶金工业   70篇
原子能技术   6篇
自动化技术   236篇
  2024年   5篇
  2023年   48篇
  2022年   276篇
  2021年   306篇
  2020年   84篇
  2019年   70篇
  2018年   89篇
  2017年   84篇
  2016年   98篇
  2015年   75篇
  2014年   95篇
  2013年   157篇
  2012年   137篇
  2011年   163篇
  2010年   110篇
  2009年   117篇
  2008年   92篇
  2007年   92篇
  2006年   76篇
  2005年   62篇
  2004年   54篇
  2003年   42篇
  2002年   29篇
  2001年   22篇
  2000年   14篇
  1999年   6篇
  1998年   18篇
  1997年   14篇
  1996年   15篇
  1995年   14篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   7篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1977年   3篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1934年   1篇
  1933年   1篇
  1932年   2篇
排序方式: 共有2525条查询结果,搜索用时 15 毫秒
41.
This paper deals with the influence of the testing equipment on impact load measurements. A previously developed method of analysis and processing of the experimental data based on a refined analogical model of the impact event and inverse problem techniques is used. This method makes it possible to obtain the mechanical response of the material, notwithstanding the disturbance of the dynamic effects associated to the test. Results from tests carried out both on falling weight and swing pendulum instrumented testing machines are compared. It is shown that this method can give an accurate estimation of the actual bending force in impact testing independent of the testing equipment.  相似文献   
42.
Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol–gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo.  相似文献   
43.
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. HD-related pathological remodelling has been reported in HD mouse models and HD carriers. In this study, we studied structural abnormalities in the optic nerve by employing Spectral Domain Optical Coherence Tomography (SD-OCT) in pre-symptomatic HD carriers of Caucasian origin. Transmission Electron Microscopy (TEM) was used to investigate ultrastructural changes in the optic nerve of the well-established R6/2 mouse model at the symptomatic stage of the disease. We found that pre-symptomatic HD carriers displayed a significant reduction in the retinal nerve fibre layer (RNFL) thickness, including specific quadrants: superior, inferior and temporal, but not nasal. There were no other significant irregularities in the GCC layer, at the macula level and in the optic disc morphology. The ultrastructural analysis of the optic nerve in R6/2 mice revealed a significant thinning of the myelin sheaths, with a lamellar separation of the myelin, and a presence of myelonoid bodies. We also found a significant reduction in the thickness of myelin sheaths in peripheral nerves within the choroids area. Those ultrastructural abnormalities were also observed in HD photoreceptor cells that contained severely damaged membrane disks, with evident vacuolisation and swelling. Moreover, the outer segment of retinal layers showed a progressive disintegration. Our study explored structural changes of the optic nerve in pre- and clinical settings and opens new avenues for the potential development of biomarkers that would be of great interest in HD gene therapies.  相似文献   
44.
Background: Clinical diagnosis of Alzheimer’s disease (AD) increasingly incorporates CSF biomarkers. However, due to the intrinsic variability of the immunodetection techniques used to measure these biomarkers, establishing in-house cutoffs defining the positivity/negativity of CSF biomarkers is recommended. However, the cutoffs currently published are usually reported by using cross-sectional datasets, not providing evidence about its intrinsic prognostic value when applied to real-world memory clinic cases. Methods: We quantified CSF Aβ1-42, Aβ1-40, t-Tau, and p181Tau with standard INNOTEST® ELISA and Lumipulse G® chemiluminescence enzyme immunoassay (CLEIA) performed on the automated Lumipulse G600II. Determination of cutoffs included patients clinically diagnosed with probable Alzheimer’s disease (AD, n = 37) and subjective cognitive decline subjects (SCD, n = 45), cognitively stable for 3 years and with no evidence of brain amyloidosis in 18F-Florbetaben-labeled positron emission tomography (FBB-PET). To compare both methods, a subset of samples for Aβ1-42 (n = 519), t-Tau (n = 399), p181Tau (n = 77), and Aβ1-40 (n = 44) was analyzed. Kappa agreement of single biomarkers and Aβ1-42/Aβ1-40 was evaluated in an independent group of mild cognitive impairment (MCI) and dementia patients (n = 68). Next, established cutoffs were applied to a large real-world cohort of MCI subjects with follow-up data available (n = 647). Results: Cutoff values of Aβ1-42 and t-Tau were higher for CLEIA than for ELISA and similar for p181Tau. Spearman coefficients ranged between 0.81 for Aβ1-40 and 0.96 for p181TAU. Passing–Bablok analysis showed a systematic and proportional difference for all biomarkers but only systematic for Aβ1-40. Bland–Altman analysis showed an average difference between methods in favor of CLEIA. Kappa agreement for single biomarkers was good but lower for the Aβ1-42/Aβ1-40 ratio. Using the calculated cutoffs, we were able to stratify MCI subjects into four AT(N) categories. Kaplan–Meier analyses of AT(N) categories demonstrated gradual and differential dementia conversion rates (p = 9.815−27). Multivariate Cox proportional hazard models corroborated these findings, demonstrating that the proposed AT(N) classifier has prognostic value. AT(N) categories are only modestly influenced by other known factors associated with disease progression. Conclusions: We established CLEIA and ELISA internal cutoffs to discriminate AD patients from amyloid-negative SCD individuals. The results obtained by both methods are not interchangeable but show good agreement. CLEIA is a good and faster alternative to manual ELISA for providing AT(N) classification of our patients. AT(N) categories have an impact on disease progression. AT(N) classifiers increase the certainty of the MCI prognosis, which can be instrumental in managing real-world MCI subjects.  相似文献   
45.
Pathogenic/likely pathogenic variants in susceptibility genes that interrupt RNA splicing are a well-documented mechanism of hereditary cancer syndromes development. However, if RNA studies are not performed, most of the variants beyond the canonical GT-AG splice site are characterized as variants of uncertain significance (VUS). To decrease the VUS burden, we have bioinformatically evaluated all novel VUS detected in 732 consecutive patients tested in the routine genetic counseling process. Twelve VUS that were predicted to cause splicing defects were selected for mRNA analysis. Here, we report a functional characterization of 12 variants located beyond the first two intronic nucleotides using RNAseq in APC, ATM, FH, LZTR1, MSH6, PALB2, RAD51C, and TP53 genes. Based on the analysis of mRNA, we have successfully reclassified 50% of investigated variants. 25% of variants were downgraded to likely benign, whereas 25% were upgraded to likely pathogenic leading to improved clinical management of the patient and the family members.  相似文献   
46.
Isoflavonoids such as genistein (GE) are well known antioxidants. The predictive biological activity of structurally new compounds such as thiogenistein (TGE)–a new analogue of GE–becomes an interesting way to design new drug candidates with promising properties. Two oxidation strategies were used to characterize TGE oxidation products: the first in solution and the second on the 2D surface of the Au electrode as a self-assembling TGE monolayer. The structure elucidation of products generated by different oxidation strategies was performed. The electrospray ionization mass spectrometry (ESI-MS) was used for identifying the product of electrochemical and hydrogen peroxide oxidation in the solution. Fourier transform infrared spectroscopy (FT-IR) with the ATR mode was used to identify a product after hydrogen peroxide treatment of TGE on the 2D surface. The density functional theory was used to support the experimental results for the estimation of antioxidant activity of TGE as well as for the molecular modeling of oxidation products. The biological studies were performed simultaneously to assess the suitability of TGE for antioxidant and antitumor properties. It was found that TGE was characterized by a high cytotoxic activity toward human breast cancer cells. The research was also carried out on mice macrophages, disclosing that TGE neutralized the production of the LPS-induced reactive oxygen species (ROS) and exhibits ABTS (2,2′-azino-bis-3-(ethylbenzothiazoline-6-sulphonic acid) radical scavenging ability. In the presented study, we identified the main oxidation products of TGE generated under different environmental conditions. The electroactive centers of TGE were identified and its oxidation mechanisms were proposed. TGE redox properties can be related to its various pharmacological activities. Our new thiolated analogue of genistein neutralizes the LPS-induced ROS production better than GE. Additionally, TGE shows a high cytotoxic activity against human breast cancer cells. The viability of MCF-7 (estrogen-positive cells) drops two times after a 72-h incubation with 12.5 μM TGE (viability 53.86%) compared to genistein (viability 94.46%).  相似文献   
47.
Endometrial cancer (EC) is the 4th most common neoplasm of the female genital tract, with 15–20% of patients being of high risk of recurrence which leads to a significant decrease in patient survival. Current therapeutic options for patients with EC are poor, being the combined therapy of carboplatin and paclitaxel the standard of care, with limited efficacy. Therefore, new therapeutic options and better monitoring tools are needed to improve the management of the disease. In the current case report, we showcase the value of liquid biopsy analyses in a microsatellite instability EC patient with initially good prognosis that however underwent rapid progression disease within 6 months post-surgery; through the study of plasma cfDNA/ctDNA dynamics to assess the tumour evolution during treatment, as well as the study of the uterine aspirate as a valuable sample that captures the intra-tumour heterogeneity that allows a comprehensive genomic profiling of the disease to identify potential therapeutic options. Furthermore, preclinical models were generated at the time of tumour progression to assess the efficacy of the identified targeted therapies.  相似文献   
48.
The aim of this study was to determine the effects of altered ganglioside composition on the expression of Cx37, Cx40, Cx43, Cx45, and Panx1 in different kidney regions of St8sia1 gene knockout mice (St8sia1 KO) lacking the GD3 synthase enzyme. Experiments were performed in twelve male 6-month-old mice: four wild-type (C57BL/6-type, WT) and eight St8sia1 KO mice. After euthanasia, kidney tissue was harvested, embedded in paraffin wax, and processed for immunohistochemistry. The expression of connexins and Panx1 was determined in different regions of the kidney: cortex (CTX.), outer stripe of outer medulla (O.S.), inner stripe of outer medulla (IN.S.), and inner medulla (IN.MED.). We determined significantly lower expression of Cx37, Cx40, Cx45, and Panx1 in different parts of the kidneys of St8sia1 KO mice compared with WT. The most consistent decrease was found in the O.S. where all markers (Cx 37, 40, 45 and Panx1) were disrupted in St8si1 KO mice. In the CTX. region, we observed decrease in the expression of Cx37, Cx45, and Panx1, while reduced expression of Cx37 and Panx1 was more specific to IN.S. The results of the present study suggest that deficiency of GD3 synthase in St8sia1 KO mice leads to disruption of renal Cx expression, which is probably related to alteration of ganglioside composition.  相似文献   
49.
NK degranulation plays an important role in the cytotoxic activity of innate immunity in the clearance of intracellular infections and is an important factor in the outcome of the disease. This work has studied NK degranulation and innate immunological profiles and functionalities in COVID-19 patients and its association with the severity of the disease. A prospective observational study with 99 COVID-19 patients was conducted. Patients were grouped according to hospital requirements and severity. Innate immune cell subpopulations and functionalities were analyzed. The profile and functionality of innate immune cells differ between healthy controls and severe patients; CD56dim NK cells increased and MAIT cells and NK degranulation rates decreased in the COVID-19 subjects. Higher degranulation rates were observed in the non-severe patients and in the healthy controls compared to the severe patients. Benign forms of the disease had a higher granzymeA/granzymeB ratio than complex forms. In a multivariate analysis, the degranulation capacity resulted in a protective factor against severe forms of the disease (OR: 0.86), whereas the permanent expression of NKG2D in NKT cells was an independent risk factor (OR: 3.81; AUC: 0.84). In conclusion, a prompt and efficient degranulation functionality in the early stages of infection could be used as a tool to identify patients who will have a better evolution.  相似文献   
50.
Skin disorders are widespread around the world, affecting people of all ages, and oxidative stress represents one of the main causes of alteration in the normal physiological parameters of skin cells. In this work, we combined a natural protein, fibroin, with antioxidant compounds extracted in water from pomegranate waste. We demonstrate the effective and facile fabrication of bioactive and eco-sustainable films of potential interest for skin repair. The blended films are visually transparent (around 90%); flexible; stable in physiological conditions and in the presence of trypsin for 12 days; able to release the bioactive compounds in a controlled manner; based on Fickian diffusion; and biocompatible towards the main skin cells, keratinocytes and fibroblasts. Furthermore, reactive oxygen species (ROS) production tests demonstrated the high capacity of our films to reduce the oxidative stress induced in cells, which is responsible for various skin diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号