首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   0篇
  国内免费   2篇
电工技术   3篇
化学工业   70篇
金属工艺   1篇
机械仪表   23篇
建筑科学   22篇
矿业工程   5篇
轻工业   124篇
水利工程   4篇
石油天然气   6篇
武器工业   1篇
无线电   41篇
一般工业技术   258篇
冶金工业   4篇
原子能技术   2篇
自动化技术   26篇
  2012年   75篇
  2011年   77篇
  2010年   18篇
  2009年   3篇
  2008年   42篇
  2007年   42篇
  2006年   45篇
  2005年   39篇
  2004年   24篇
  2003年   27篇
  2002年   22篇
  2001年   21篇
  2000年   21篇
  1999年   13篇
  1998年   11篇
  1997年   12篇
  1996年   13篇
  1995年   9篇
  1994年   7篇
  1993年   3篇
  1992年   6篇
  1991年   8篇
  1990年   9篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1984年   10篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1954年   2篇
  1949年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有590条查询结果,搜索用时 24 毫秒
71.
Escherichia coli hosts able to over-express metal-binding proteins (MerP) originating from Gram-positive (Bacillus cereus RC607) and Gram-negative (Pseudomonas sp. K-62) bacterial strains were used to adsorb Ni(2+), Zn(2+) and Cr(3+) in aqueous solutions. The initial adsorption rate and adsorption capacity were determined to evaluate the performance of the biosorbents. With the expression of MerP protein, the metal adsorption capacity of the recombinant strains for Ni(2+), Zn(2+) and Cr(3+) significantly improved. The cells carrying Gram-positive merP gene (GB) adsorbed Zn(2+) and Cr(3+) at a capacity of 22.3 and 0.98 mmol/g biomass, which is 121% and 72% higher, respectively, over that of the MerP-free host cells. Adsorption capacity of the cells carrying Gram-negative merP gene (GP) also increased 144% and 126% for Zn(2+) and Cr(3+), respectively. Both recombinant strains also exhibited 24% and 5% enhancement in adsorption of Ni(2+) for GB and GP, respectively. The initial adsorption rate of the recombinant biosorbents was also higher than that of the MerP-free host, suggesting an increased metal-binding affinity with MerP expression. Severe cell damage on GB biosorbent was observed after Cr(3+) adsorption, probably due to the metal toxicity effect on the cells.  相似文献   
72.
Kim BY  Jiang W  Oreopoulos J  Yip CM  Rutka JT  Chan WC 《Nano letters》2008,8(11):3887-3892
Semiconductor quantum dots (QDs) offer great promise as the new generation of fluorescent probes to image and study biological processes. Despite their superior optical properties, QDs for live cell monitoring and tracking of cytoplasmic processes remain limited due to inefficient delivery methods available, altered state or function of cells during the delivery process and the requirement of surface-functionalized QDs for specific labeling of subcellular structures. Here, we present a noninvasive method to image subcellular structures in live cells using bioconjugated QD nanocomposites. By incorporating antibody-coated QDs within biodegradable polymeric nanospheres, we have designed a bioresponsive delivery system that undergoes endolysosomal to cytosolic translocation via pH-dependent reversal of nanocomposite surface charge polarity. Upon entering the cytosol, the polymer nanospheres undergo hydrolysis thus releasing the QD bioconjugates. This approach facilitates multiplexed labeling of subcellular structures inside live cells without the requirement of cell fixation or membrane permeabilization. As compared to conventional intracellular delivery techniques, this approach allows the high throughput cytoplasmic delivery of QDs with minimal toxicity to the cell. More importantly, this development demonstrates an important rational strategy for the design of a multifunctional nanosystem for biological applications.  相似文献   
73.
Nanostructures of different sizes, shapes and material properties have many applications in biomedical imaging, clinical diagnostics and therapeutics. In spite of what has been achieved so far, a complete understanding of how cells interact with nanostructures of well-defined sizes, at the molecular level, remains poorly understood. Here we show that gold and silver nanoparticles coated with antibodies can regulate the process of membrane receptor internalization. The binding and activation of membrane receptors and subsequent protein expression strongly depend on nanoparticle size. Although all nanoparticles within the 2-100 nm size range were found to alter signalling processes essential for basic cell functions (including cell death), 40- and 50-nm nanoparticles demonstrated the greatest effect. These results show that nanoparticles should no longer be viewed as simple carriers for biomedical applications, but can also play an active role in mediating biological effects. The findings presented here may assist in the design of nanoscale delivery and therapeutic systems and provide insights into nanotoxicity.  相似文献   
74.
Hsieh BY  Chang YF  Ng MY  Liu WC  Lin CH  Wu HT  Chou C 《Analytical chemistry》2007,79(9):3487-3493
A novel fiber-optic biosensor based on a localized surface plasmon coupled fluorescence (LSPCF) system is proposed and developed. This biosensor consists of a biomolecular complex in a sandwich format of . It is immobilized on the surface of an optical fiber where a complex forms the fluorescence probe and is produced by mixing Cy5-labeled antibody and protein A conjugated gold nanoparticles (Au-PA). The LSPCF is excited by localized surface plasmon on the GNP surface where the evanescent field is applied near the core surface of the optical fiber. At the same time, the fluorescence signal is detected by a photomultiplier tube located beside the unclad optical fiber with high collection efficiency. Experimentally, this novel LSPCF biosensor is able to detect mouse immunoglobulin G (IgG) at a minimum concentration of 1 pg/mL (7 fM) during the biomolecular interaction of the IgG with anti-mouse IgG. The analysis is expanded by a discussion of the amplification of the LSPCF intensity by GNP coupling, and overall, this LSPCF biosensor is confirmed experimentally as a biosensor with very high sensitivity.  相似文献   
75.
Development of a comprehensive, three-dimensional gas chromatograph (GC3) instrument is described. The instrument utilizes two six-port diaphragm valves as the interfaces between three, in-series capillary columns housed in a standard Agilent 6890 gas chromatograph fitted with a high data acquisition rate flame ionization detector. The modulation periods for sampling column one by column two and column two by column three are set so that a minimum of three slices (more commonly four or five) are acquired by the subsequent dimension resulting in both comprehensive and quantitative data. A 26-component test mixture and quantitative standards are analyzed using the GC3 instrument. A useful methodology for three-dimensional (3D) data analysis is evaluated, based on the chemometric technique parallel factor analysis (PARAFAC). Since the GC3 instrument produces trilinear data, we are able to use this powerful chemometric technique, which is better known for the analysis of two-dimensional (2D) separations with multichannel detection (e.g., GC x GC-TOFMS) or multiple samples (or replicates) of 2D data. Using PARAFAC, we mathematically separate (deconvolute) the 3D data "volume" for overlapped analytes (i.e., ellipsoids), provided there is sufficient chromatographic resolution in each of the three separation dimensions. Additionally, PARAFAC is applied to quantify analyte standards. For the quantitative analysis, it is demonstrated that PARAFAC may provide a 10-fold improvement in the signal-to-noise ratio relative to a traditional integration method applied to the raw, baseline-corrected data. The GC3 instrument obtains a 3D peak capacity of 3500 at a chromatographic resolution of one in each separation dimension. Furthermore, PARAFAC deconvolution provides a considerable enhancement in the effective 3D peak capacity.  相似文献   
76.
Su WC  Chen CM  Ouyang Y 《Applied optics》2007,46(16):3233-3238
The orthogonal polarization simultaneous readout technique in a hybrid-multiplexed memory using angular multiplexing and polarization multiplexing is presented. Twenty holograms were hybrid multiplexed in a single LiNbO(3) crystal with ten angular positions for angular multiplexing. In each angular position of the holographic memory, two images with orthogonal polarization are multiplexed in the same spatial location inside the LiNbO(3) via polarization multiplexing. These two orthogonally polarized images can be reconstructed simultaneously with a linear polarization reading beam, but they can be separated with a polarization beam splitter, and accordingly each can be viewed independently. The exposure schedule for holographic storage using the proposed hybrid-multiplexing technique is derived.  相似文献   
77.
Toluene extraction enhanced by salting-out effect was employed to recover dinitrotoluene isomers and 2,4,6-trinitrotoluene (2,4,6-TNT) from wastewater of toluene nitration processes (e.g. dinitration or trinitration). The batchwise experiments were conducted to elucidate the influence of various operating variables on the extracting performance, including concentrations and species of inorganic salts, such as NaCl, KCl, Na(2)SO(4), K(2)SO(4) and MgSO4, acidity of wastewater, volume ratios of solvent versus wastewater and extraction stages in existence of inorganic salts. It was found that recovery of total organic compounds (TOC) was significantly elevated with increasing concentrations of salts, whose promoting effects were in the following order: NaCl>Na(2)SO(4)>K(2)SO(4)>MgSO4>KCl on the weight basis of wastewater. Besides, high volume ratio of toluene/wastewater (ca. 2.0) was more suitable for recovery of TOC from wastewater with or without addition of NaCl, of which extractable priority was as follows: 2,6-DNT>2,4-DNT>2,4,6-TNT. It is remarkable that TOC in wastewater would be almost completely recovered by sequential four stages toluene extraction, promoted continuously by salting-out effect.  相似文献   
78.
A theoretical and numerical analysis of spectral self-interference microscopy (SSM) is presented with the goal of expanding the realm of SSM applications. In particular, this work is intended to enable SSM imaging in low-signal applications such as single-molecule studies. A comprehensive electromagnetic model for SSM is presented, allowing arbitrary forms of the excitation field, detection optics, and tensor sample response. An evanescently excited SSM system, analogous to total internal reflection microscopy, is proposed and investigated through Monte Carlo simulations. Nanometer-scale axial localization for single-emitter objects is demonstrated, even in low-signal environments. The capabilities of SSM in imaging more general objects are also considered--specifically, imaging arbitrary fluorophore distributions and two-emitter objects. A data-processing method is presented that makes SSM robust to noise and uncertainties in the detected spectral envelope.  相似文献   
79.
Chithrani BD  Chan WC 《Nano letters》2007,7(6):1542-1550
We investigated the mechanism by which transferrin-coated gold nanoparticles (Au NP) of different sizes and shapes entered mammalian cells. We determined that transferrin-coated Au NP entered the cells via clathrin-mediated endocytosis pathway. The NPs exocytosed out of the cells in a linear relationship to size. This was different than the relationship between uptake and size. Furthermore, we developed a mathematical equation to predict the relationship of size versus exocytosis for different cell lines. These studies will provide guidelines for developing NPs for imaging and drug delivery applications, which will require "controlling" NP accumulation rate. These studies will also have implications in determining nanotoxicity.  相似文献   
80.
We have investigated the optothermal property and decomposition characteristics of PtO(x) ultrathin film protected by ZnS-SiO2 layers and effects of the constituent phases of PtO(x) on super-resolution capability and read stability of the super-RENS disk. All the ZnS-SiO2/PtO(x)/ZnS-SiO2 multilayers exhibited a steep reflectivity drop at the temperature range between 265 and 350 degrees C, corresponding to the decomposition of PtO(x). The decomposition temperature of the 4-nm-thick PtO(x) ultrathin film protected by ZnS-SiO2 layers was much lower than those obtained in thick PtO(x) films without protection. The activation energy for thermal decomposition was approximately 1.3 eV. Both the decomposition temperature and activation energy for thermal decomposition were unaffected by the constituent phases of PtO(x). Carrier to noise ratios (CNR) of over 40 dB for mark size of 150 nm were achieved in all super-resolution near-field structure (super-RENS) disks, while the super-resolution readout was limited to 2.5 x 10(3) approximately 4.5 x 10(4) cycles. The effect of constituent phases of PtO(x) on the super-resolution capability of super-RENS disk with a PtO(x) mask layer was minimal. However, as the constituent phases of PtO(x) mask layer transformed from a mixture of Pt and PtO, to pure PtO, and then to a mixture of PtO and PtO2, the readout stability of super-RENS disk increased dramatically since less heat was absorbed by the PtO(x) mask layer composed of PtO and PtO2 during the readout process, prohibiting the diffusion of materials inside the bubble to the GeSbTe phase change layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号