The concept of a long-term sensor for ion changes in the lysosome is presented. The sensor is made by layer-by-layer assembly of oppositely charged polyelectrolytes around ion-sensitive fluorophores, in this case for protons. The sensor is spontaneously incorporated by cells and resides over days in the lysosome. Intracellular changes of the concentration of protons upon cellular stimulation with pH-active agents are monitored by read-out of the sensor fluorescence at real time. With help of this sensor concept it is demonstrated that the different agents used (Monensin, Chloroquine, Bafilomycin A1, Amiloride) possessed different kinetics and mechanisms of action in affecting the intracellular pH values. 相似文献
As of the middle of April 2020, the unprecedented COVID-19 pandemic has claimed more than 137,000 lives (https://coronavirus.jhu.edu/map.html). Because of its extremely fast spreading, the attention of the global scientific community is now focusing on slowing down, containing and finally stopping the spread of this disease. This requires the concerted action of researchers and practitioners of many related fields, raising, as always in such situations the question, of what kind of research has to be conducted, what are the priorities, how has research to be coordinated and who needs to be involved. In other words, what are the characteristics of the response of the global research community on the challenge? In the present paper, we attempt to characterise, quantify and measure the response of academia to international public health emergencies in a comparative bibliometric study of multiple outbreaks. In addition, we provide a preliminary review of the global research effort regarding the defeat of the COVID-19 pandemic. From our analysis of six infectious disease outbreaks since 2000, including COVID-19, we find that academia always responded quickly to public health emergencies with a sharp increase in the number of publications immediately following the declaration of an outbreak by the WHO. In general, countries/regions place emphasis on epidemics in their own region, but Europe and North America are also concerned with outbreaks in other, developed and less developed areas through conducting intensive collaborative research with the core countries/regions of the outbreak, such as in the case of Ebola in Africa. Researches in the fields of virology, infectious diseases and immunology are the most active, and we identified two characteristic patterns in global science distinguishing research in Europe and America that is more focused on public health from that conducted in China and Japan with more emphasis on biomedical research and clinical pharmacy, respectively. Universities contribute slightly less than half to the global research output, and the vast majority of research funding originates from the public sector. Our findings on how academia responds to emergencies could be beneficial to decision-makers in research and health policy in creating and adjusting anti-epidemic/-pandemic strategies.
λ-DNA as well as plasmids can be successfully deposited by molecular combing on hydrophobic surfaces, for pH values ranging from 4 to 10. On polydimethylsiloxane (PDMS) substrates, the deposited DNA molecules are overstretched by about 60-100%. There is a significant influence of sodium ions (NaCl) on the surface density of the deposited DNA, with a maximum near to 100 mM NaCl for a DNA solution (28 ng μl(-1)) at pH 8. The combing process can be described by a micromechanical model including: (i) the adsorption of free moving coiled DNA at the substrate; (ii) the stretching of the coiled DNA by the preceding meniscus; (iii) the relaxation of the deposited DNA to the final length. The sticky ends of λ-DNA cause an adhesion force in the range of about 400 pN which allows a stable overstretching of the DNA by the preceding meniscus. The exposing of hidden hydrophobic bonds of the overstretched DNA leads to a stable deposition on the hydrophobic substrate. The pH-dependent density of deposited DNA as well as the observed influence of sodium ions can be explained by their screening of the negatively charged DNA backbone and sticky ends, respectively. The final DNA length can be derived from a balance of the stored elastic energy of the overstretched molecules and the energy of adhesion. 相似文献
A fast and convenient method for on-line monitoring of the extraction of heavy metals from solid (environmental) matrixes was developed. By the incorporation of microcartridges filled with dried and pulverized solid samples into the conduits of a flow system and appropriate selection of the liquid flowing through the cartridge, information about the degree of leaching and in particular of the kinetics of the leaching process are obtained. The method was optimized for determination of different metals of environmental concern using in-line detection by FAAS and ICPMS. 相似文献
Hot stamping of steel sheets using water or nitrogen cooling media was studied on a laboratory scale. Sheets of grade 22MnB5 boron steels in three different thicknesses were investigated and the results of experimental hot stamping tests were considered. Microstructural analysis, linear and surface hardness profiling as well as tensile tests of formed samples were carried out. After hot stamping, mostly fully martensitic microstructures, which yield ultra high strength levels, were produced. It is concluded that die cooling media, i.e., water or nitrogen, have a significant effect on material properties after hot stamping. Using liquid nitrogen as coolant in the punch instead of water increases yield strength by 50 to 65MPa. Moreover, the evolution of the temperature and force during the hot stamping process was simulated by using a coupled thermomechanical FEM program. The results of numerical simulation and experimental results are in good agreement. 相似文献
Based on the Hertz contact problem of two cylinders a method was developed to determine Young's modulus of brittle materials, e.g. coke, from the indirect tensile test. The error band to be taken into account for evaluation have been discussed. As far as chamber-oven cokes are concerned, it was possible to derive Young's moduli, which correlated well with the values found by other authors by means of static measuring methods. In addition was determined, on a semi-empiric basis, a linear relation between Young's modulus and porosity, – relation allowing to consider the influence of coke structure as well. 相似文献
This work identifies the influence of strain rate, temperature, plastic strain, and microstructure on the strain rate sensitivity of automotive sheet steel grades in crash conditions. The strain rate sensitivity m has been determined by means of dynamic tensile tests in the strain rate range 10?3–200 s?1 and in the temperature range 233–373 K. The dynamic flow curves have been tested by means of servohydraulic tensile testing. The strain rate sensitivity decreases with increasing plastic strain due to a gradual exhausting of work hardening potential combined with adiabatic softening effects. The strain rate sensitivity is improved with decreasing temperature and increasing strain rate, according to the thermally activated deformation mechanism. The m‐value is reduced with increasing strength level, this decrease being most pronounced for steels with a yield strength below 400 MPa. Solid solution alloying with manganese, silicon, and especially phosphorous elements lowers the strain rate sensitivity significantly. Second phase hardening with bainite and martensite as the second constituent in a ferritic matrix reduces the strain rate sensitivity of automotive sheet steels. A statistical modeling is proposed to correlate the m‐value with the corresponding quasistatic tensile flow stress. 相似文献