首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5634篇
  免费   595篇
  国内免费   52篇
电工技术   81篇
综合类   46篇
化学工业   1532篇
金属工艺   223篇
机械仪表   357篇
建筑科学   148篇
矿业工程   26篇
能源动力   317篇
轻工业   489篇
水利工程   35篇
石油天然气   32篇
武器工业   2篇
无线电   994篇
一般工业技术   1175篇
冶金工业   207篇
原子能技术   112篇
自动化技术   505篇
  2024年   5篇
  2023年   65篇
  2022年   105篇
  2021年   204篇
  2020年   170篇
  2019年   187篇
  2018年   219篇
  2017年   239篇
  2016年   243篇
  2015年   225篇
  2014年   295篇
  2013年   408篇
  2012年   413篇
  2011年   534篇
  2010年   330篇
  2009年   364篇
  2008年   273篇
  2007年   213篇
  2006年   186篇
  2005年   185篇
  2004年   163篇
  2003年   190篇
  2002年   170篇
  2001年   173篇
  2000年   115篇
  1999年   95篇
  1998年   94篇
  1997年   59篇
  1996年   55篇
  1995年   43篇
  1994年   40篇
  1993年   25篇
  1992年   30篇
  1991年   24篇
  1990年   20篇
  1989年   21篇
  1988年   15篇
  1987年   13篇
  1986年   17篇
  1985年   11篇
  1984年   10篇
  1983年   3篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1973年   2篇
排序方式: 共有6281条查询结果,搜索用时 745 毫秒
141.
142.
143.
144.
The use a stabilized lithium structure as cathode material for batteries could be a fundamental alternative in the development of next-generation energy storage devices. However, the lithium structure severely limits battery life causes safety concerns due to the growth of lithium (Li) dendrites during rapid charge/discharge cycles. Solid electrolytes, which are used in high-density energy storage devices and avoid the instability of liquid electrolytes, can be a promising alternative for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, through the application of a low-dimensional graphene quantum dot (GQD) layer structure, stable operation characteristics were demonstrated based on Li+ ion conductivity and excellent electrochemical performance. Moreover, the device based on the modified graphene quantum dots (GQDs) in solid state exhibited retention properties of 95.3% for 100 cycles at 0.5 C and room temperature (RT). Transmission electron microscopy analysis was performed to elucidate the Li+ ion action mechanism in the modified GQD/electrolyte heterostructure. The low-dimensional structure of the GQD-based solid electrolyte has provided an important strategy for stably-scalable solid-state lithium battery applications at room temperature. It was demonstrated that lithiated graphene quantum dots (Li-GQDs) inhibit the growth of Li dendrites by regulating the modified Li+ ion flux during charge/discharge cycling at current densities of 2.2–5.5 mA cm, acting as a modified Li diffusion heterointerface. A full Li GQD-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li–GQD hetero-interface. This study indicates that the low-dimensional carbon structure in Li–GQDs can be an effective approach for stabilization of solid-state Li matrix architecture.  相似文献   
145.
Duplex spinel-ZrO2 ceramic composites were produced by an emulsion-hot kerosene drying technique. The sintered duplex spinel-ZrO2 ceramics which had the composition of 55 wt% Al2O3-20 wt% ZrO2-25 wt% MgO, consisted of a spinel matrix, whose grain size was in the range of 1.5 to 2.0 m, and uniformly dispersed zirconia agglomerates having grain sizes ranging from 1.0 to 2.0 m. Zirconia agglomerates began to appear at a temperature of 1500 °C and the duplex spinel-ZrO2 structure was formed with the weight ratio of Al2O3/MgO being within 1.67 to 2.20 and the amount of ZrO2 addition being within 5 to 25 wt %. The relative density, fracture toughness, flexural strength, and critical temperature difference of the spinel-ZrO2 composite were 97.8%, 1.98 MPam0.5, 390 MPa, and 275 °C, respectively.  相似文献   
146.
The Al-12Si-5Fe-3Cu-1Mg(wt%) alloy was rapidly solidified by centrifugal atomization. The microstructural characteristics of rapidly solidified powder and the microstructure changes with heat treatment were investigated in terms and related to powder size. The microstructures of the powder consisted of dendritic -Al, eutectic phase, Cu-rich phase, and needle-like intermetallic compounds. These phases were much finer than that of ingot cast structure and the size decreased with increasing cooling rate. The X-ray diffraction of the atomized powders revealed the presence of non-equilibrium 3-(AlFeSi) intermetallic phase. This phase appeared to transform to an equilibrium -(AlFeSi) phase by heating at temperatures above 470°C. The extruded rod which was hot extruded at 360°C with an extrusion ratio of 40:1 also revealed the presence of the -(AIFeSi) intermetallic phase. Using DSC, the exothermic peak due to precipitation from the supersaturated -Al matrix was observed in the range of 200–250°C during continuous heating of atomized powder, and the size of the peaks increased with decreasing powder size.  相似文献   
147.
This paper proposes a magnetic compass fault detection method for GPS/INS/Magnetic compass integrated navigation systems. The fault is assumed to be caused by the hard iron and soft iron effect and modeled as an abrupt change in the magnetic compass output. In order to detect the fault, a test statistic related with only azimuth error measurement is determined. When a fault is detected, the GPS/INS/Magnetic compass integrated navigation system is changed into a GPS/INS integrated navigation system mode. In order to show the validity of the proposed method, computer simulation and van testing are carried out. The simulation and van test results show that the proposed navigation system gives more accurate outputs than the GPS/INS/Magnetic compass without the proposed method.  相似文献   
148.
Abstract— High‐efficiency and simple‐structured red‐emitting phosphorescent devices based on the hole‐injection layer of 4,4′,4″‐tris(2‐naphthylphenyl‐phenylamino)‐triphenylamine [2‐TNATA] and the emissive layer of bis(10‐hydroxybenzo[h] quinolinato)beryllium complex [Bebq2] doped with SFC‐411 (proprietary red phosphorescent dye) have been researched. The fabricated devices are divided into three types depending on whether or not the hole‐transport layer of N,N′‐bis(1 ‐naphthyl)‐N, N'‐diphenyl‐1,1′‐biphenyl‐4,4′‐diamine [NPB] or the electron‐transport layer of SFC‐137 (proprietary electron transporting material) is included. Among the experimental devices, the best electroluminescent characteristics were obtained for the device with an emission structure of 2‐TNATA/Bebq2:SFC‐411/SFC‐137. In this device, current density and luminance were found to be 200 mA/cm2 and 15,000 cd/m2 at an applied voltage of 7 V, respectively. Current efficiencies were 15 and 11.6 cd/A under a luminance of 500 and 5000 cd/m2. The peak wavelength in the electroluminescent spectral distribution and color coordinates on the Commission Internationale de I'Eclairage (CIE) chart were 628 nm and (0.67, 0.33), respectively.  相似文献   
149.
In this work, we develop an efficient storage technique to support real-time streaming of layer encoded video in a single hard disk. The size of a single hard disk drive will soon be able to hold multi-tera bytes and is going to handle relatively larger number of files. We expect that disk layout in a single disk will be rather critical issue in determining the efficiency of the storage system. We propose a novel storage technique, Inter-Object Layer Clustering for layer encoded video objects. In Inter-Object Layer Clustering, storage is partitioned into two regions: lower layer partition and upper layer partition. Lower and upper layer partition harbor the lower layer and upper layer data blocks across all video objects and cluster them together. We develop an elaborate performance model for this placement scheme. We examine the performance of the proposed technique using analytical formulation as well as a physical experiment. We found that clustering the layers across all objects brings 100% increase in the number of concurrent sessions compared to the case where file is stored in temporal order when the clients’ access bandwidth is narrow. Inter-Object Layer Clustering shows 15% performance improvement compared to the clustering of layers within the objects.  相似文献   
150.
Conventional robot motion teaching methods use a teaching pendant or a motion capture device and are not the most convenient or intuitive ways to teach a robot sophisticated and fluid movements such as martial arts motions. Ideally, a robot could be set up as if it were a clothing mannequin that has light limbs and flexible yet frictional joints which can be positioned at desirable shape and hold all the positions. To do the same with a robot, an operator could pull or push the links with minor forces until the desired robot posture is attained. For this, a robot should measure the applied external force by using torque sensors at the robot joints. However, torque sensors are bulky and expensive to install in every DOF joints while keeping a compact design, which is essential to humanoid robots. In this paper, we use only motor current readings to acquire joint torques. The equations used to compensate for the effect of gravity on the joint torques and the self-calibration method to earn link parameters are presented. Additionally, kinematic restrictions can be imposed on the robot’s arms to simplify the motion teaching. Here, we teach the Kendo training robot with this method and the robot’s learnt martial art motions are demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号