首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301740篇
  免费   39960篇
  国内免费   16222篇
电工技术   21847篇
技术理论   11篇
综合类   22193篇
化学工业   54147篇
金属工艺   16543篇
机械仪表   18099篇
建筑科学   24878篇
矿业工程   8329篇
能源动力   8839篇
轻工业   26210篇
水利工程   6462篇
石油天然气   13419篇
武器工业   2816篇
无线电   38370篇
一般工业技术   37924篇
冶金工业   11254篇
原子能技术   3272篇
自动化技术   43309篇
  2024年   1059篇
  2023年   4283篇
  2022年   8153篇
  2021年   11888篇
  2020年   9928篇
  2019年   9703篇
  2018年   10385篇
  2017年   11864篇
  2016年   11121篇
  2015年   15017篇
  2014年   17800篇
  2013年   21603篇
  2012年   21919篇
  2011年   22512篇
  2010年   21279篇
  2009年   19931篇
  2008年   19475篇
  2007年   18484篇
  2006年   17160篇
  2005年   13831篇
  2004年   10376篇
  2003年   9794篇
  2002年   10463篇
  2001年   9066篇
  2000年   6917篇
  1999年   5464篇
  1998年   3343篇
  1997年   2845篇
  1996年   2703篇
  1995年   2230篇
  1994年   1840篇
  1993年   1232篇
  1992年   1050篇
  1991年   748篇
  1990年   565篇
  1989年   463篇
  1988年   363篇
  1987年   224篇
  1986年   181篇
  1985年   117篇
  1984年   91篇
  1983年   54篇
  1982年   70篇
  1981年   65篇
  1980年   70篇
  1979年   39篇
  1978年   12篇
  1976年   10篇
  1959年   16篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
As a giant leap in DNA self-assembly, DNA origami has exhibited an unprecedented ability to construct nanostructures with arbitrary shapes and sizes. In typical DNA origami, hundreds of short DNA staple strands fold a long, single-stranded (ss) DNA scaffold cooperatively into designed nanostructures. However, large numbers of DNA strands are expensive and would hinder applications such as pharmaceutical investigations because of the complicated components. Therefore, one challenge is how to reduce the number of staple strands needed to construct DNA origami. For a DNA origami structure, the scale-free folding pattern of the scaffold strand is determined by staple strands at the branching vertexes. Simple duplex regions help to define the size-related features of the origami geometry. In this study, we hypothesized that a scaffold strand can be correctly folded into a designed topology by using only staple strands involved in branching vertexes. After assembly, any remaining, flexible, single-stranded regions of the scaffold could be converted into rigid duplexes by DNA polymerase to achieve the designed geometric structures. To demonstrate the concept, we used only 18 staple strands (covering 15 % of the scaffold strand) to assemble a porous DNA nanostructure, which was visualized by atomic force microscopy (AFM). This study helps understanding of the role of cooperativity in origami folding, and provides a cost-effective approach for small-scale prototyping DNA origami.  相似文献   
122.
Wei  Mengnan  Ban  Boyuan  Li  Jingwei  Sun  Jifei  Li  Feifei  Jiang  Xuesong  Chen  Jian 《SILICON》2020,12(2):327-338
Silicon - A novel green cationic surfactant Poly (propylene glycol) bis (2-aminopropyl ether) (PEA) with multiple amine groups was utilized as a collector for flotation separation of quartz from...  相似文献   
123.
124.
Cerebral microbleeds (CMBs) are small hemosiderin deposits indicative of prior cerebral microscopic hemorrhage and previously thought to be clinically silent. Recent population‐based cross‐sectional studies and prospective longitudinal cohort studies have revealed association between CMB and cognitive dysfunction. In the general population, CMBs are associated with age, hypertension, and cerebral amyloid angiopathy. In the chronic kidney disease (CKD) population, diminished estimated glomerular filtration rate has been found to be an independent risk factor for CMB, raising the possibility that a uremic milieu may predispose to microbleeds. In the end‐stage renal disease (ESRD) population on hemodialysis, the incidence of microbleeds is significantly higher compared with a control group without history of CKD or stroke. We present an ESRD patient on chronic hemodialysis with a history of gradual cognitive decline and progressive CMBs. Through this case and literature review, we illustrate the need to develop detection and prediction models to treat this frequent development in ESRD patients.  相似文献   
125.
This paper addresses a tracking problem for uncertain nonlinear discrete‐time systems in which the uncertainties, including parametric uncertainty and external disturbance, are periodic with known periodicity. Repetitive learning control (RLC) is an effective tool to deal with periodic unknown components. By using the backstepping procedures, an adaptive RLC law with periodic parameter estimation is designed. The overparameterization problem is overcome by postponing the parameter estimation to the last backstepping step, which could not be easily solved in robust adaptive control. It is shown that the proposed adaptive RLC law without overparameterization can guarantee the perfect tracking and boundedness of the states of the whole closed‐loop systems in presence of periodic uncertainties. In addition, the effectiveness of the developed controller is demonstrated by an implementation example on a single‐link flexible‐joint robot. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
126.
127.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   
128.
Ionomics is a novel multidisciplinary field that uses advanced techniques to investigate the composition and distribution of all minerals and trace elements in a living organism and their variations under diverse physiological and pathological conditions. It involves both high-throughput elemental profiling technologies and bioinformatic methods, providing opportunities to study the molecular mechanism underlying the metabolism, homeostasis, and cross-talk of these elements. While much effort has been made in exploring the ionomic traits relating to plant physiology and nutrition, the use of ionomics in the research of serious diseases is still in progress. In recent years, a number of ionomic studies have been carried out for a variety of complex diseases, which offer theoretical and practical insights into the etiology, early diagnosis, prognosis, and therapy of them. This review aims to give an overview of recent applications of ionomics in the study of complex diseases and discuss the latest advances and future trends in this area. Overall, disease ionomics may provide substantial information for systematic understanding of the properties of the elements and the dynamic network of elements involved in the onset and development of diseases.  相似文献   
129.
Mitochondrial oxidative damage and dysfunction contribute to a wide range of human diseases. Considering the limitation of conventional antioxidants and that mitochondria are the main source of reactive oxygen species (ROS) which induce oxidative damage, mitochondria-targeted antioxidants which can selectively block mitochondrial oxidative damage and prevent various types of cell death have been widely developed. As a lipophilic cation, triphenylphosphonium (TPP) has been commonly used in designing mitochondria-targeted antioxidants. Conjugated with the TPP moiety, antioxidants can achieve more than 1000-fold higher mitochondrial concentration depending on cell membrane potentials and mitochondrial membrane potentials. Herein we discuss the deficiencies of conventional antioxidants and the advantages of mitochondrial targeting, and review various types of TPP-based mitochondria-targeted antioxidants. These provide theoretical and background support for the design of new anti-oxidant.  相似文献   
130.
A series of hyperbranched poly(citric polyethylene glycol) (PCPEG) materials with varied polyethylene glycol (PEG) chain lengths as plasticizers were mixed with maize starch (MS) via cooking and film‐forming. The structure, pasting property, plasticization, aging property, moisture absorption and compatibility of plasticized starches were studied by means of Fourier transform infrared spectroscopy, X‐ray diffraction, rapid viscosity analysis, tension testing, moisture absorption measurements and scanning electron microscopy. Compared with PEG and citric acid, PCPEG was more effective in promoting starch chain movement and inhibiting the retrogradation of starch film. Also, PCPEG/MS had smaller moisture content. The longer the plasticizer chain, the better were the aging resistance and moisture resistance of starch. But with an increase of PEG chain length, mechanical properties of PCPEG/MS deteriorated and the compatibility between PCPEG and MS decreased. The hyperbranched derivative of PEG with longer chain exhibited improved plasticization and compatibility with starch. © 2019 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号