首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   24篇
  国内免费   3篇
电工技术   11篇
综合类   1篇
化学工业   160篇
金属工艺   6篇
机械仪表   10篇
建筑科学   11篇
能源动力   75篇
轻工业   25篇
水利工程   2篇
石油天然气   2篇
无线电   42篇
一般工业技术   71篇
冶金工业   49篇
原子能技术   11篇
自动化技术   56篇
  2024年   3篇
  2023年   2篇
  2022年   18篇
  2021年   31篇
  2020年   27篇
  2019年   20篇
  2018年   28篇
  2017年   15篇
  2016年   18篇
  2015年   15篇
  2014年   17篇
  2013年   52篇
  2012年   32篇
  2011年   24篇
  2010年   25篇
  2009年   33篇
  2008年   26篇
  2007年   30篇
  2006年   11篇
  2005年   9篇
  2004年   13篇
  2003年   7篇
  2002年   5篇
  2001年   8篇
  2000年   3篇
  1999年   6篇
  1998年   9篇
  1997年   7篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有532条查询结果,搜索用时 15 毫秒
91.
Several noninvasive modalities including electrical impedance tomography (EIT), magnetic induction tomography (MIT), and induced-current EIT (ICEIT) have been developed for imaging the electrical conductivity distribution within a human body. Although these modalities differ in how the excitation and detection circuitry (electrodes or coils) are implemented, they share a number of common principles not only within the image reconstruction approaches but also with respect to the basic principle of generating a current density distribution inside a body and recording the resultant electric fields. In this paper, we are interested in comparing differences between these modalities and in theoretically understanding the compromises involved, despite the increased hardware cost and complexity that such a multimodal system brings along. To systematically assess the merits of combining data, we performed 3-D simulations for each modality and for the multimodal system by combining all available data. The normalized sensitivity matrices were computed for each modality based on the finite element method, and singular value decomposition was performed on the resultant matrices. We used both global and regional quality measures to evaluate and compare different modalities. This study has shown that the condition number of the sensitivity matrix obtained from the multimodal tomography with 16-electrode and 16-coil is much lower than the condition number produced in the conventional 16-channel EIT and MIT systems, and thus, produced promising results in terms of image stability. An improvement of about 20% in image resolution can be achieved considering feasible signal-to-noise ratio levels.  相似文献   
92.
Aim: The aim was to compare the microleakage of resin composite bonded with different adhesive systems in class-II cavities at enamel or dentine margins. Material and methods: 60 extracted human molar teeth received slot cavity preparations on mesial and distal surfaces (mesial cervical margin was prepared in enamel and distal in dentine). They were randomly divided into five groups (n?=?12) according to the adhesive system: Group-A: Silorane Bond (S), Group-B: Adper Single Bond 2 (SB), Group-C: Clearfil SE Bond (CSE), Group-D: Single Bond Universal (USel) (selective etch-and-rinse), Group-E: Single Bond Universal (USE) (all-in-one). The preparations were restored using the same resin composite (Filtek Ultimate) except Group A which was restored by Silorane composite. The teeth were thermocycled, immersed in dye, sectioned, and dye penetration was evaluated quantitatively using image analysis. The data were analyzed using the two-way analysis of variance and Bonferroni test. Results: In all groups, there was no statistically significant difference between enamel margins at occlusal and gingival sites (p?>?0.05). The statistical difference between Group-A (S) and Group-B (SB) was significant at all margins. Group-B (SB) presented the greatest microleakage amounts at all margins and the highest scores were obtained in the dentine. Likewise, SB demonstrated statistically significant differences between dentine and enamel margins (occlusal and gingival)(p?<?0.05). Conclusion: All adhesive systems showed similar microleakage values between enamel margins in occlusal and gingival regions. However, when the gingival margin is located in the dentine, etch&rinse adhesive systems may not be a choice in terms of microleakage prevention.  相似文献   
93.
Sunflower oil-modified polyester (SOMPE) was prepared via the ring opening polymerization of ?-caprolactone (CL) using partial glycerides (PGs) and stannous octoate (SO) as the initiator and catalyst, respectively. In addition to being the initiator, PGs participate in the drying process of the film sample for coating purposes. The structure of the sample was characterized by FT-IR and 1H NMR. The film of SOMPE cannot reach a fully dried state as a result of its less oil moiety content. By increasing the oil fraction, the chain length of polycaprolactone (PCL) decreased by changing the [monomer]/[initiator] mol ratio and shortening the reaction time. Even with these precautions, the molecular weight of SOMPE could not be reduced below 5000 g/mol, and this caused the film to become soft. Therefore, hydroxy-functional benzoxazine monomer (HFB-a) was prepared and used in a further modification of SOMPE. HFB-a was chemically combined with SOMPE via the urethane linkage formed from the reaction of 2,4-toluene diisocyanate, yielding SOMPE-HFB-a. Because the SOMPE-HFB-a sample also had a soft film, additional HFB-a was used to prepare the SOMPE-HFB-a/HFB-a blend. The cured blend prepared with SOMPE-HFB-a and HFB-a in a weight ratio of 1/8, [SOMPE-HFB-a/HFB-a:1/8], had good film properties. The cured film was examined by FT-IR and DSC following the curing process. After our modifications were applied, PCL and polybenzoxazine lost their softness and brittleness, respectively, and a binder with good film properties was formed.  相似文献   
94.
Natural convection has been performed in an insulated horizontally thin plate embedded in a triangular enclosure filled with fluid saturated porous medium, numerically. Bottom and inclined wall of triangular enclosure are isothermally heated and cooled, respectively. Vertical wall of enclosure is adiabatic. Steady, two-dimensional, laminar governing equations, which are written with Darcy model, were solved with finite-difference method. Calculations are conducted for different lengths and locations of thin plate, different aspect ratios, and Darcy-modified Rayleigh number. Prandtl number was chosen as 0.71. It is observed that the change on plate location in vertical and horizontal axes makes small effect on heat transfer; however flow field and temperature distribution strongly affected from these parameters.  相似文献   
95.
Numerical analyses of the flow and heat transfer due to buoyancy forces in a square enclosure divided by an impermeable partition between air and water filled chests were carried out using a finite difference technique. The enclosure was heated from left wall and cooled from right, isothermally. Horizontal walls were adiabatic. The partition divided the enclosure into air and water regions. Thus, two cases were examined: left side of partition was filled with air and right side was filled with water (Case I, air-partition-water) and left side was filled with water and right side with air (Case II, water-partition-air). Epoxy was chosen as partition material. Results were obtained for different Grashof numbers (103  Gr  106), thickness of the partition (0.05  ε  0.2) and location of the partition (0.25  c  0.75). An analytical treatment has been performed for low Grashof numbers. Numerical and analytical results gave an acceptable agreement. It was found that filling of fluid into chests is important for obtaining maximum heat transfer and energy saving. When left chest was filled with air (Case I), higher heat transfer was formed. It was an interesting result that heat transfer decreased with increasing of location of the partition for all values of partition thickness at Case I. On the contrary, heat transfer was a decreasing function of increasing value of location of the partition.  相似文献   
96.
A numerical analysis of the entropy production has been performed due to natural convection heat transfer and fluid flow in isosceles triangular enclosures with partially heated from below and symmetrically cooled from sloping walls. Governing equations are solved by finite difference method. Governing parameters on flow and temperature fields are Rayleigh number (103  Ra  8.8 × 105), dimensionless length of heater (0.25  (ℓ′ = ℓ/L)  1.0), dimensionless location of heater (0.25  (c′ = c/L)  0.75) and inclination angle of slopping walls (30°  β  60°). Heat transfer results are presented in terms of local and mean Nusselt numbers (Nu) while entropy production results are shown with entropy production number (Ns) and Bejan number (Be). Isotherms, streamlines, contours of entropy production due to heat transfer and fluid friction irreversibility are plotted. It is observed that entropy production number increases but Bejan number decreases with increasing of Rayleigh number. However, both entropy production due to heat transfer and fluid friction irreversibility are affected by higher inclination angle of triangle and length of heater.  相似文献   
97.
Natural convection heat transfer in a porous media filled and non-isothermally heated from the bottom wall of triangular enclosure is analyzed using finite difference technique. Darcy law was used to write equations of porous media. Dimensionless heatfunction was used to visualize the heat transport due to buoyancy forces. Three different boundary conditions were applied for the vertical and inclined boundaries of triangular enclosures as Case I; both vertical and inclined walls were isothermal, Case II; vertical wall was adiabatic and inclined one was isothermal, Case III; vertical wall is isothermal and inclined one is adiabatic. A cosine function was utilized to get non-isothermal wall condition. The study was performed for different aspect ratios (0.25 ? AR ? 1.0) and Darcy-modified Rayleigh numbers (100 ? Ra ? 1000). It was observed that heat transfer enhancement was formed when vertical and inclined walls were isothermal while bottom wall was at non-uniform temperature. Heat transfer from bottom wall did not vary when the value of aspect ratio was higher than 0.50. In addition, heatline visualization technique was a useful technique for non-isothermally heated and porous media filled triangular enclosures.  相似文献   
98.
The problem of steady, laminar, natural convection flow in a porous enclosure divided by a triangular massive partition has been formulated. The massive triangular partition is a solid adiabatic body which is located to the right and top wall. Bottom and left vertical wall of porous enclosure are isothermally heated and cooled, respectively. Remaining wall is adiabatic. Governing equations using Darcy model are solved numerically by the finite-difference method and the Successive Under Relaxation (SUR) technique is used to solve linear algebraic equations. Thanks to massive partition, two different enclosure are formed, depends on dimensions of the triangular body, as triangle and trapezoidal. Flow patterns and temperature distributions were presented at different aspect ratios (0 ≤ AR ≤ 1) and Rayleigh numbers (100 ≤ Ra ≤ 1000). Results are given for different aspect ratios (AR) for AR = 0, 0.25, 0.50, 0.75 and 1. A parametric study is conducted and a set of representative results for flow and temperature characteristics are presented and discussed.  相似文献   
99.
Excess foundry sands from gray-iron casting are a mixture of sand, bentonite, and additives that can have properties desirable for structural fills and hydraulic barriers, depending on their bentonite content. To facilitate beneficial reuse of foundry sands, typical strength parameters need to be available so that designers can make comparisons with designs employing virgin earthen materials. To provide typical design parameters, a testing program was conducted to characterize the strength of foundry sands and their interaction with geosynthetics. Small-scale direct shear tests, large-scale multistage interface shear tests, and pullout tests were conducted using foundry sands with bentonite contents representing the range normally found in the casting industry and three geosynthetics (geotextile, geogrid, and geomembrane). The results indicate that foundry sands can be used effectively in geotechnical construction. Friction angles of the as-compacted foundry sands generally ranged between 39° and 43°, and the as-compacted cohesions ranged between 17 and 28 kPa. Drained friction angles were similar to as-compacted friction angles except at high bentonite content. Typical interface friction angles ranged between 25° and 35°, with efficiencies ranging between 0.5 and 0.9. Interaction coefficients from the pullout tests ranged between 0.2 and 1.7.  相似文献   
100.
This paper presents a detailed computational investigation of the effect of particle shape on the interface shear behavior of granular materials. The discrete element method (DEM) using clusters to model rough particles is used, expanding the procedure introduced in an earlier paper by Jensen et al. [1]. Seven new cluster shapes (i.e., particle configurations) of varying degrees of roughness are presented herein, and numerical experiments simulating ring shear tests are made using these clusters. From these simulations, the effect of particle shape on void ratio (e) and interface angle of friction between soil and structure surface (δ) is reported. Particle shape characteristics include roundness, angularity, and surface roughness. The results of numerical simulations using the newly formed cluster shapes are in very good qualitative agreement with laboratory tests. Simulation results showed that the void ratio of a particle mass increased as the angularity or roughness of the particles increased. They also showed an increase in interface shear strength between perfectly round DEM particles and the more angular cluster shapes, but no systematic correlations with the various definitions of particle shape parameters was found. It may be necessary to use greater accuracy in modeling the size and shape distributions of a natural medium to further investigate the influence of particle shape on interface friction. The simulations also successfully reflected the relationship between interface friction angle and structure surface roughness as demonstrated in recent physical experiments. The simulations comparing initially “dense” media to initially “loose” media demonstrated behavior that is similar to the behavior of a natural sandy soil observed in experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号