首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21863篇
  免费   1217篇
  国内免费   60篇
电工技术   311篇
综合类   25篇
化学工业   4896篇
金属工艺   879篇
机械仪表   1299篇
建筑科学   427篇
矿业工程   6篇
能源动力   864篇
轻工业   1851篇
水利工程   91篇
石油天然气   16篇
无线电   3655篇
一般工业技术   4630篇
冶金工业   1541篇
原子能技术   291篇
自动化技术   2358篇
  2024年   22篇
  2023年   275篇
  2022年   400篇
  2021年   687篇
  2020年   470篇
  2019年   498篇
  2018年   700篇
  2017年   661篇
  2016年   768篇
  2015年   602篇
  2014年   938篇
  2013年   1389篇
  2012年   1456篇
  2011年   1789篇
  2010年   1299篇
  2009年   1332篇
  2008年   1211篇
  2007年   937篇
  2006年   813篇
  2005年   708篇
  2004年   638篇
  2003年   586篇
  2002年   593篇
  2001年   517篇
  2000年   437篇
  1999年   423篇
  1998年   709篇
  1997年   420篇
  1996年   395篇
  1995年   257篇
  1994年   169篇
  1993年   151篇
  1992年   112篇
  1991年   100篇
  1990年   75篇
  1989年   88篇
  1988年   74篇
  1987年   63篇
  1986年   51篇
  1985年   43篇
  1984年   36篇
  1983年   28篇
  1982年   31篇
  1981年   26篇
  1980年   29篇
  1979年   13篇
  1977年   22篇
  1976年   33篇
  1975年   17篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
The authors present an analysis of the effect of timing offset on channel estimation for comb-type pilot-aided orthogonal frequency division multiplexing (OFDM) systems. Residual timing offset does not negatively affect the channel estimation of the pilot subcarrier, but does corrupt the channel information obtained via interpolation. This paper provides the mean square error (MSE) channel estimation performance when a linear interpolation technique is used in a comb-type pilot-aided OFDM system. Analysis shows that the performance degradation of the channel estimator due to imperfect frame synchronization is dependent on the frequency correlation of the channels and the amount of timing offset  相似文献   
162.
The WindSat microwave polarimetric radiometer consists of 22 channels of polarized brightness temperatures operating at five frequencies: 6.8, 10.7, 18.7, 23.8, and 37.0 GHz. The 10.7-, 18.7-, and 37.0-GHz channels are fully polarimetric (vertical/horizontal, /spl plusmn/45/spl deg/ and left-hand and right-hand circularly polarized) to measure the four Stokes radiometric parameters. The principal objective of this Naval Research Laboratory experiment, which flys on the USAF Coriolis satellite, is to provide the proof of concept of the first passive measurement of ocean surface wind vector from space. This paper presents details of the on-orbit absolute radiometric calibration procedure, which was performed during of a series of satellite pitch maneuvers. During these special tests, the satellite pitch was slowly ramped to +45/spl deg/ (and -45/spl deg/), which caused the WindSat conical spinning antenna to view deep space during the forward (or aft portion) of the azimuth scan. When viewing the homogeneous and isotropic brightness of space (2.73 K) through both the main reflector and the cold-load calibration reflector, it is possible to determine the absolute calibration of the individual channels and the relative calibration bias between polarimetric channels. Results demonstrate consistent and stable channel calibrations (with very small brightness biases) that exceed the mission radiometric calibration requirements.  相似文献   
163.
This letter presents a compact 2.5 Gb/s burst‐mode receiver using the first reported monolithic amplifier IC developed with 0.25 …m SiGe BiCMOS technology. With optimum avalanche photodiode gain, the receiver module can obtain a fast response, high sensitivity and wide dynamic range, satisfying the overhead timing and various power specifications for a 2.5 Gb/s next‐generation passive optical network (PON), as well as a legacy 1.25 Gb/s PON in the upstream.  相似文献   
164.
The role of grain boundaries on oxygen surface exchange in an oxide ion conductor is reported. Atomic‐scale characterization of the microstructure and chemical composition near the grain boundaries of gadolinia‐doped ceria (GDC) thin films show the segregation of dopants and oxygen vacancies along the grain boundaries using the energy dispersive spectroscopy in scanning transmission electron microscopy (STEM‐EDS). Kelvin probe microscopy is employed to verify the charge distribution near grain boundaries and shows that the grain boundary is positively charged, indicating a high concentration of oxygen vacancies. AC impedance spectroscopy on polycrystalline GDC membranes with thin interfacial layers with different grain boundary densities at the cathodes demonstrated that the cells with higher grain boundary density result in lower electrode impedance and higher exchange current density. These experimental evidences clearly show that grain boundaries on the surface provide preferential reaction sites for facilitated oxygen incorporation into the GDC electrolyte.  相似文献   
165.
This paper presents a novel 16‐quadrature‐amplitude‐modulation (QAM) E‐band communication system. The system can deliver 10 Gbps through eight channels with a bandwidth of 5 GHz (71‐76 GHz/81‐86 GHz). Each channel occupies 390 MHz and delivers 1.25 Gbps using a 16‐QAM. Thus, this system can achieve a bandwidth efficiency of 3.2 bit/s/Hz. To implement the system, a driver amplifier and an RF up‐/down‐conversion mixer are implemented using a 0.1 µm gallium arsenide pseudomorphic high‐electron‐mobility transistor (GaAs pHEMT) process. A single‐IF architecture is chosen for the RF receiver. In the digital modem, 24 square root raised cosine filters and four (255, 239) Reed‐Solomon forward error correction codecs are used in parallel. The modem can compensate for a carrier‐frequency offset of up to 50 ppm and a symbol rate offset of up to 1 ppm. Experiment results show that the system can achieve a bit error rate of 10?5 at a signal‐to‐noise ratio of about 21.5 dB.  相似文献   
166.
In this work, a structurable gel‐polymer electrolyte (SGPE) with a controllable pore structure that is not destroyed after immersion in an electrolyte is produced via a simple nonsolvent induced phase separation (NIPS) method. This study investigates how the regulation of the nonsolvent content affects the evolving nanomorphology of the composite separators and overcomes the drawbacks of conventional separators, such as glass fiber (GF), which has been widely used in sodium ion batteries (SIBs), through the regulation of pore size and gel‐polymer position. The interfacial resistance is reduced through selective positioning of a poly(vinylidene fluoride‐co‐hexa fluoropropylene) (PVdF‐HFP) gel‐polymer with the aid of NIPS, which in turn enhances the compatibility between the electrolyte and electrode. In addition, the highly porous morphology of the GF/SGPE obtained via NIPS allows for the absorption of more liquid electrolyte. Thus, a greatly improved cell performance of the SIBs is observed when a tailored SGPE is incorporated into the GF separator through charge/discharge testing compared with the performance observed with pristine GF and conventional GF coated with PVdF‐HFP gel‐polymer.  相似文献   
167.
This letter presents an angular minimum spanning tree (AMST) algorithm for topology control in multi‐hop wireless ad hoc networks. The AMST algorithm builds up an MST for every angular sector of a given degree around each node to determine optimal transmission power for connecting to its neighbors. We demonstrate that AMST preserves both local and network‐wide connectivity. It also improves robustness to link failure and mitigates transmission power waste.  相似文献   
168.
Reversible metal-filamentary mechanism has been widely investigated to design an analog resistive switching memory (RSM) for neuromorphic hardware-implementation. However, uncontrollable filament-formation, inducing its reliability issues, has been a fundamental challenge. Here, an analog RSM with 3D ion transport channels that can provide unprecedentedly high reliability and robustness is demonstrated. This architecture is realized by a laser-assisted photo-thermochemical process, compatible with the back-end-of-line process and even applicable to a flexible format. These superior characteristics also lead to the proposal of a practical adaptive learning rule for hardware neural networks that can significantly simplify the voltage pulse application methodology even with high computing accuracy. A neural network, which can perform the biological tissue classification task using the ultrasound signals, is designed, and the simulation results confirm that this practical adaptive learning rule is efficient enough to classify these weak and complicated signals with high accuracy (97%). Furthermore, the proposed RSM can work as a diffusive-memristor at the opposite voltage polarity, exhibiting extremely stable threshold switching characteristics. In this mode, several crucial operations in biological nervous systems, such as Ca2+ dynamics and nonlinear integrate-and-fire functions of neurons, are successfully emulated. This reconfigurability is also exceedingly beneficial for decreasing the complexity of systems—requiring both drift- and diffusive-memristors.  相似文献   
169.
Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.  相似文献   
170.
Hydrogen is a promising alternative to fossil fuels that can reduce greenhouse gas emissions. Decoupled water electrolysis system using a reversible proton storage redox mediator, where the oxygen evolution reaction and hydrogen evolution reaction are separated in time and space, is an effective approach to producing hydrogen gas with high purity, high flexibility, and low cost. To realize fast hydrogen production in such a system, a redox mediator capable of releasing protons rapidly is required. Herein, α-MoO3, with an ultrafast proton transfer property that can be explained by a dense hydrogen bond network in the lattice oxygen arrays of HxMoO3, is examined as a high-rate redox mediator for fast hydrogen production in acidic electrolytes. The α-MoO3 redox mediator shows both a large capacity of 204 mAh g−1 and fast hydrogen production at a current rate of 10 A cm−2(≈153 A g−1), outperforming most of the previously reported solid-state redox mediators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号