首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1635篇
  免费   41篇
  国内免费   3篇
电工技术   136篇
综合类   2篇
化学工业   425篇
金属工艺   36篇
机械仪表   54篇
建筑科学   30篇
矿业工程   1篇
能源动力   96篇
轻工业   122篇
水利工程   2篇
无线电   129篇
一般工业技术   314篇
冶金工业   146篇
原子能技术   52篇
自动化技术   134篇
  2023年   9篇
  2022年   23篇
  2021年   36篇
  2020年   16篇
  2019年   17篇
  2018年   26篇
  2017年   16篇
  2016年   48篇
  2015年   22篇
  2014年   38篇
  2013年   104篇
  2012年   87篇
  2011年   84篇
  2010年   80篇
  2009年   76篇
  2008年   73篇
  2007年   72篇
  2006年   68篇
  2005年   60篇
  2004年   47篇
  2003年   46篇
  2002年   47篇
  2001年   38篇
  2000年   25篇
  1999年   26篇
  1998年   79篇
  1997年   60篇
  1996年   45篇
  1995年   29篇
  1994年   26篇
  1993年   26篇
  1992年   15篇
  1991年   20篇
  1990年   18篇
  1989年   17篇
  1988年   9篇
  1987年   17篇
  1986年   17篇
  1985年   13篇
  1984年   15篇
  1983年   18篇
  1982年   14篇
  1981年   13篇
  1980年   7篇
  1979年   10篇
  1978年   5篇
  1977年   3篇
  1976年   10篇
  1975年   5篇
  1971年   2篇
排序方式: 共有1679条查询结果,搜索用时 15 毫秒
71.
A novel photoreactive polymer with histidine polar groups was synthesized through the copolymerization of two types of methacrylic acid, one carrying histidine groups and the other carrying azidoaniline groups. The polymer was photoimmobilized on polyester disks for surface modification. The effect of the surface modification on the hydrophilic and biofouling properties was investigated. Static contact angle measurements showed that the polymeric surface was modified to be comparatively hydrophilic in the polymer‐immobilized region. Micropattern immobilization was carried out with a photolithographic method. Atomic force microscopy measurements showed that the polymer was formed on the disks in response to ultraviolet irradiation. Protein adsorption was reduced on the polymer‐immobilized regions, and in those regions, spreading and adhesion of mammalian cells were reduced in comparison with that in nonimmobilized regions. In conclusion, a novel histidine‐containing polymer was photoreactively immobilized on a conventional polymer surface, and it had reduced interaction with proteins and cells. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
72.
Catalytic properties of three-dimensional zeolites, Y (FAU), Beta (BEA), and CIT-1 (CON) zeolites were examined in the alkylation, isopropylation, sec-butylation, and tert-butylation, of biphenyl (BP), and compared to those of H-mordenite (MOR). The selectivities for 4,4′-dialkylbiphenyl (4,4′-DABP) varied with the types of zeolite and of alkylating agent. FAU, BEA, and CON gave only low selectivities for 4,4′-diisopropylbiphenyl (4,4′-DIPB) in the isopropylation, and predominant isomers were bulky and thermodynamically unstable 2,x′-DIPB (2,2′-, 2,3′-, and 2,4′-) at lower temperatures, and bulky and thermodynamically stable 3,4′- and 3,3′-DIPB at higher temperatures: this is quite different from catalytic features over MOR, which gave 4,4′-DIPB with high selectivities at moderate temperatures. These results suggest that FAU, BEA, and CON have no shape-selective nature in the isopropylation, and that the reaction is principally controlled kinetically at lower temperatures, and thermodynamically at higher temperatures. The sec-butylation gave similar results to the isopropylation. Although the selectivities for 4,4′-di-sec-butylbiphenyl (4,4′-DSBB) were higher than those in the isopropylation, predominant isomers were 2,x′-DSBB (2,2′-, 2,3′-, and 2,4′-) at lower temperatures, and 3,4′- and 3,3′-DSBB at higher temperatures. The tert-butylation gave 4,4′-di-tert-butylbiphenyl (4,4′-DTBB) in moderate to high selectivities over all zeolites at moderate temperatures: the selectivity for 4,4′-DTBB was higher than 80% over BEA and CON; however, it still remained at 50% over FAU. FAU channels with super cages are too large for selective formation of 4,4′-DTBB.

From these results, it is concluded that the selectivity for 4,4′-DABP in the alkylation over MOR, FAU, BEA, and CON is determined by the exclusion of bulky isomers at their transition states, and that the exclusion is caused by the steric restriction at the transition states of bulky isomers by the zeolite channels.  相似文献   

73.
We describe the design and proof of concept of a pair of chemical probes for investigating DNA-protein interactions-specifically, the incorporation of 7-bromo-7-deazaadenine and 3-bromo-3-deazaadenine 2'-deoxynucleosides (Br(7)C(7)dA and Br(3)C(3)dA) into oligodeoxynucleotides (ODNs)-and their utility. Whereas the bromo substituent of the Br(7)C(7)dA unit in an ODN duplex acts sterically to inhibit binding with NF-kappaB, which interacts with the duplex in its major groove, the bromo substituent of the Br(3)C(3)dA unit acts sterically to inhibit binding with RNase H, which interacts with the duplex in its minor groove. In addition, the utilization of ODNs containing 7-deazaadenine and 3-deazaadenine 2'-deoxynucleosides (C(7)dA and C(3)dA), together with the pair of chemical probes, afforded valuable information on the requirement for nitrogen atoms located in either the major or minor grooves. Accordingly, we were able to show the utility of ODNs containing Br(7)C(7)dA, Br(3)C(3)dA, C(7)dA, and C(3)dA for the investigation of DNA-protein interactions.  相似文献   
74.
The adsorption of metal ions (Mo6+, Cu2+, Fe2+, and Fe3+) was examined on chemically modified chitosans with a higher fatty acid glycidyl (CGCs), and the adsorption of Cu2+ was examined on ethylenediamine tetraacetic acid dianhydride modified CGCs (EDTA‐CGCs) synthesized by the reaction of the CGCs with ethylenediamine tetraacetic acid dianhydride. The adsorption of phosphate ions onto the resulting substrate/metal‐ion complex was measured. Mo6+ depicted remarkable adsorption toward the CGCs, although all the Mo6+ was desorbed under the adsorption conditions of the phosphate ions. The other metal ions were adsorbed to some extent on CGCs by chelating to the amino group in the substrate, except for CGC‐1, which had the highest degree of substitution (83.9%). Considerable amounts of Fe2+ were adsorbed onto CGCs; however, only a limited number of phosphate ions was adsorbed onto the substrate/metal‐ion complex. As a result, the following adsorbent/metal‐ion complexes gave higher adsorption ability toward phosphate ions: CGC‐4/Cu2+, CGC‐4/Fe3+, and EDTA‐CGC‐3/Fe3+. Where, CGC‐3 is a chemically modified chitosan with the degree of substitution of 26.5 percentage, and CGC‐4 is one with the degree of substitution of 16.0 percentage. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
75.
In this study, we report the characterization of carbonaceous films deposited on metal substrates by liquid-phase electrodeposition in methanol. The characterization of carbonaceous films by electrodeposition was examined by means of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (EELS), secondary ion mass spectrometry (SIMS), atom probe (AP) and high resolution-elastic recoil detection analysis (HR-ERDA). From these results, it was found that the films deposited on the metal substrates were composed of the sp2 and sp3 carbon contents, of which the ratio was about 7:3. Furthermore, the films by electrodeposition contained much hydrogen. The hydrogen contents in the surface were about 60 at.% and those in the subsurface were a few 10 at.%.  相似文献   
76.
Golgi α‐mannosidase II (GMII) is a key enzyme in the N‐glycosylation pathway and is a potential target for cancer chemotherapy. The natural product swainsonine is a potent inhibitor of GMII. In this paper we characterize the binding of 5α‐substituted swainsonine analogues to the soluble catalytic domain of Drosophila GMII by X‐ray crystallography. These inhibitors enjoy an advantage over previously reported GMII inhibitors in that they did not significantly decrease the inhibitory potential of the swainsonine head‐group. The phenyl groups of these analogues occupy a portion of the binding site not previously seen to be populated with either substrate analogues or other inhibitors and they form novel hydrophobic interactions. They displace a well‐organized water cluster, but the presence of a C(10) carbonyl allows the reestablishment of important hydrogen bonds. Already approximately tenfold more active against the Golgi enzyme than the lysosomal enzyme, these inhibitors offer the potential of being extended into the N‐acetylglucosamine binding site of GMII for the creation of even more potent and selective GMII inhibitors.  相似文献   
77.
Dissimilar metal joints of galvannealed steel and commercially available pure aluminium (A1050) sheets were produced by changing the laser power and the roller pressure by the laser pressure welding method. In this method, the YAG laser beam was irradiated into a flare groove made by these dissimilar metal sheets. In addition, the laser beam was scanned at various frequencies and patterns through the lens using two-dimensional scanning mirrors. Then the sheets were pressed by the pressure rolls to be joined. The compound layers in the weld interface were observed by optical microscope, and the layer thicknesses were measured. The thicknesses were in the range of 7–20 μm. The mechanical properties of welded joints were evaluated by the tensile shear test and the peel test. In the tensile shear test, the strengths of the joints produced under the most welding conditions were so high that the fracture occurred through the base aluminium sheet. In the peel test of the specimens subjected to the laser beam of 1200–1400 W power under the roller pressure of 2.94 kN, the specimen fracture took place in the base aluminium sheet. Even if the compound layer was thick, high joint strength was obtained. In order to know the reason for such high strength of joints with thick compound layers and the joining mechanism, the compound layer was observed by the HR-TEM. The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13, and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is assumed that the joining areas were heated in a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high strength joints with the relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   
78.
Laser pressure welding was conducted by changing the laser power and the roller pressure in the previous experiment. It was revealed that dissimilar metal welding of galvannealed steel and pure aluminium was feasible in a wide range of welding conditions. When the roller pressure was more than 1.96 kN at the laser powers equal to or less than 1400 W, the joint strengths were so high that the specimens in the tensile shear and the peel tests fractured in the A1050 parent metal.

In order to know the reason for such high strengths of joints with thick compound layers and the joining mechanism, the compound layer was observed by HR-transmission electron microscopy (TEM). The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13 and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is guessed that the joining areas were heated at a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high-strength joints with a relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   
79.
Pervaporation (PV) is a membrane technology that holds great promise for industrial applications. To better understand the PV mechanism, PV dehydrations of various types of organic solvents (methanol, ethanol, iso-propanol, tert-butanol, and acetone) were performed on five types of organosilica and two types of silicon carbide-based membranes, all with different pore sizes. Water permeance was dependent on the types of organic aqueous solutions, which suggested that organic solvents penetrated the pores and hindered the permeation of water. In addition, water permeance of various types of membranes in PV was well correlated with hydrogen permeance in single-gas permeation. Furthermore, a clear correlation was obtained between the permeance ratio in PV and that in single-gas permeation, which was confirmed via the modified-gas translation model. These correlations make it possible to use single-gas permeation properties to predict PV performance.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号