首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1023篇
  免费   71篇
  国内免费   5篇
电工技术   25篇
综合类   2篇
化学工业   314篇
金属工艺   16篇
机械仪表   23篇
建筑科学   32篇
矿业工程   3篇
能源动力   55篇
轻工业   135篇
水利工程   15篇
石油天然气   19篇
无线电   107篇
一般工业技术   182篇
冶金工业   47篇
原子能技术   6篇
自动化技术   118篇
  2024年   2篇
  2023年   15篇
  2022年   42篇
  2021年   57篇
  2020年   46篇
  2019年   33篇
  2018年   56篇
  2017年   38篇
  2016年   55篇
  2015年   56篇
  2014年   56篇
  2013年   130篇
  2012年   63篇
  2011年   79篇
  2010年   53篇
  2009年   38篇
  2008年   37篇
  2007年   25篇
  2006年   15篇
  2005年   30篇
  2004年   20篇
  2003年   11篇
  2002年   9篇
  2001年   7篇
  2000年   8篇
  1999年   11篇
  1998年   19篇
  1997年   9篇
  1996年   8篇
  1995年   8篇
  1994年   2篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1099条查询结果,搜索用时 15 毫秒
151.
Current immunosensors have an insufficient number of binding sites for the recognition of biomolecules, which leads to false positive or negative results. In this research, a facile, cost‐effective, disposable, and highly selective electrochemical immunosensing platform is developed based on cationic polyelectrolyte polyallylamine (PAAMI) anchored laser‐ablated graphene (LAG). Here, for the first time, PAAMI is introduced to stabilize LAG flakes, while retaining the intrinsic thermal and electronic properties of the substrate by noncovalent π–π interaction and electrostatic physical absorption. The sensing platform offers a suitable number of anchoring sites for the immobilized antibodies by providing ? NH2 functional groups. The proper grafting of PAAMI is confirmed through X‐ray photoelectron spectroscopy and Raman spectroscopy. The immunosensing platform is applied to detect immunoglobulin (IgG) biomarkers as a proof of concept. Under optimized conditions, the sensing platform exhibits a linear range of 0.012–15 and 15–352 ng mL?1 with a limit of detection of 6 pg mL?1 for IgG detection with high selectivity. Based on the analysis, the developed immunosensing platform can be used for point‐of‐care detection of IgG in clinical diagnostic centers. Furthermore, the developed strategy is well suited for the detection of other cancer biomarkers after immobilizing the relevant antibodies.  相似文献   
152.
This paper presents the investigation of influence factors on the output performance and the reduction of exhaust emission in the direct injection type diesel engine. In this work, the analysis of combustion products and combustion characteristics are investigated by numerical method and experiment under the various engine operating conditions. The combusion performance and exhaust emissions are analyzed in terms of the heat release, cylinder pressure and major exhaust emissions of engine. The accuracy of the prediction versus experimental data and the capability of the heat release, cylinder pressure and all the major exhaust emissions are demonstrated. The results of this study show that the combustion parameters have influence on the combustion processes and the nitric oxide emission in the direct injection type diesel engine. The nitric oxide concentration decreases with the increase of engine speed and the advance of injection timing.  相似文献   
153.
The evolved packet core (EPC) network is the mobile network standardized by the 3rd Generation Partnership Project and represents the recent evolution of mobile networks providing high‐speed data rates and on‐demand connectivity services. Software‐defined networking (SDN) is recently gaining momentum in network research as a new generation networking technique. An SDN‐based EPC is expected to introduce gains to the EPC control plane architecture in terms of simplified, and perhaps even software‐based, vendor independent infrastructure nodes. In this paper, we propose a novel SDN‐based EPC architecture along with the protocol‐level detailed implementation and provide a mechanism for identifying information fields exchanged between SDN‐EPC entities that maintains correct functionality with minimal impact on the conventional design. Furthermore, we present the first comprehensive network performance evaluation for the SDN‐based EPC versus the conventional EPC and provide a comparative analysis of 2 networks performances identifying potential bottlenecks and performance issues. The evaluation focuses on 2 network control operations, namely, the S1‐handover and registration operations, taking into account several factors, and assessing performance metrics such as end‐to‐end delay (E2ED) for completion of the respective control operation, and EPC nodes utilization figures.  相似文献   
154.
Neural Computing and Applications - To increase the quality of loans provision and reduce the risk involved in this process, several credit scoring models have been developed and utilized to...  相似文献   
155.
In this work, a fast approach for the fabrication of hundreds of ultraclean field‐effect transistors (FETs) is introduced, using single‐walled carbon nanotubes (SWCNTs). The synthesis of the nanomaterial is performed by floating‐catalyst chemical vapor deposition, which is employed to fabricate high‐performance thin‐film transistors. Combined with palladium metal bottom contacts, the transport properties of individual SWCNTs are directly unveiled. The resulting SWCNT‐based FETs exhibit a mean field‐effect mobility, which is 3.3 times higher than that of high‐quality solution‐processed CNTs. This demonstrates that the hereby used SWCNTs are superior to comparable materials in terms of their transport properties. In particular, the on–off current ratios reach over 30 million. Thus, this method enables a fast, detailed, and reliable characterization of intrinsic properties of nanomaterials. The obtained ultraclean SWCNT‐based FETs shed light on further study of contamination‐free SWCNTs on various metal contacts and substrates.  相似文献   
156.
The field of precision oncology is rapidly progressing toward integrated “multiomics” analysis of multiple molecular species (such as DNA, RNA, or proteins) to provide a more complete profile of tumor heterogeneity. Micro/nanomaterial‐based systems, which leverage the unique properties of miniature materials, are currently well positioned to expand beyond rudimentary biomarker detection toward multiomics signature analysis. To enable clinical translation, the rational design and implementation of miniaturized systems should be driven by the unique clinical challenges present at various crucial cancer stages. This review features micro/nanomaterial‐based systems that are robustly tested on real patient samples for molecular biomarker detection at i) initial cancer screening and/or diagnosis, ii) cancer prognosis and risk stratification, and iii) longitudinal treatment/recurrence monitoring. Furthermore, this review discusses the use of micro/nanomaterials to facilitate sample preparation for different molecular biomarker species. Finally, this review deliberates on the recent paradigm shift of micro/nanomaterial‐based system innovation toward integrated multiomics cancer signature analysis and puts forth insights and perspectives on existing challenges. It is anticipated that this review could stimulate the propagation of new concepts and approaches to kick‐start a new generation of clinically translational technologies that capitalize on multiomics cancer signatures.  相似文献   
157.
The aim of the present analysis is to implement a relatively recent computational algorithm, reproducing kernel Hilbert space, for obtaining the solutions of systems of first-order, two-point boundary value problems for ordinary differential equations. The reproducing kernel Hilbert space is constructed in which the initial–final conditions of the systems are satisfied. Whilst, three smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems compared with other numerical methods.  相似文献   
158.
Graphene is a single layer of carbon atoms arranged in an sp2-hybridized structure with properties far superior compared to other materials. Research and development in graphene synthesis have been rapidly growing the past few years, especially using chemical vapor deposition (CVD) over various types of carbon precursor. The nature and the type of carbon precursor is one important parameter of growth by CVD, especially for graphene production, since they can dramatically impact graphene growth yield and rate. However, effects of the used carbon precursor on graphene growth mechanisms are rarely discussed. In the course of large-scale and low-cost graphene preparation, this review on the recent trends regarding the utilization of diverse carbon precursors used to synthesize graphene via the CVD method is of great interest for development of improved or alternative synthesis methods. The details and the mechanisms involved in graphene synthesis using carbon precursors in the form of gaseous, liquids and solids are compared, analyzed and discussed thoroughly. In this review, we present a thorough overview on the impact and mechanisms of carbon precursors in achieving high-quality graphene with competitive edge in the near future.  相似文献   
159.
The development in Information and Communication Technology has led to the evolution of new computing and communication environment. Technological revolution with Internet of Things (IoTs) has developed various applications in almost all domains from health care, education to entertainment with sensors and smart devices. One of the subsets of IoT is Internet of Medical things (IoMT) which connects medical devices, hardware and software applications through internet. IoMT enables secure wireless communication over the Internet to allow efficient analysis of medical data. With these smart advancements and exploitation of smart IoT devices in health care technology there increases threat and malware attacks during transmission of highly confidential medical data. This work proposes a scheme by integrating machine learning approach and block chain technology to detect malware during data transmission in IoMT. The proposed Machine Learning based Block Chain Technology malware detection scheme (MLBCT-Mdetect) is implemented in three steps namely: feature extraction, Classification and blockchain. Feature extraction is performed by calculating the weight of each feature and reduces the features with less weight. Support Vector Machine classifier is employed in the second step to classify the malware and benign nodes. Furthermore, third step uses blockchain to store details of the selected features which eventually improves the detection of malware with significant improvement in speed and accuracy. ML-BCT-Mdetect achieves higher accuracy with low false positive rate and higher True positive rate.  相似文献   
160.
In recent times, Industrial Internet of Things (IIoT) experiences a high risk of cyber attacks which needs to be resolved. Blockchain technology can be incorporated into IIoT system to help the entrepreneurs realize Industry 4.0 by overcoming such cyber attacks. Although blockchain-based IIoT network renders a significant support and meet the service requirements of next generation network, the performance arrived at, in existing studies still needs improvement. In this scenario, the current research paper develops a new Privacy-Preserving Blockchain with Deep Learning model for Industrial IoT (PPBDL-IIoT) on 6G environment. The proposed PPBDL-IIoT technique aims at identifying the existence of intrusions in network. Further, PPBDL-IIoT technique also involves the design of Chaos Game Optimization (CGO) with Bidirectional Gated Recurrent Neural Network (BiGRNN) technique for both detection and classification of intrusions in the network. Besides, CGO technique is applied to fine tune the hyperparameters in BiGRNN model. CGO algorithm is applied to optimally adjust the learning rate, epoch count, and weight decay so as to considerably improve the intrusion detection performance of BiGRNN model. Moreover, Blockchain enabled Integrity Check (BEIC) scheme is also introduced to avoid the misrouting attacks that tamper the OpenFlow rules of SDN-based IIoT system. The performance of the proposed PPBDL-IIoT methodology was validated using Industrial Control System Cyber-attack (ICSCA) dataset and the outcomes were analysed under various measures. The experimental results highlight the supremacy of the presented PPBDL-IIoT technique than the recent state-of-the-art techniques with the higher accuracy of 91.50%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号