首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   740篇
  免费   48篇
  国内免费   1篇
电工技术   7篇
综合类   1篇
化学工业   263篇
金属工艺   52篇
机械仪表   27篇
建筑科学   22篇
能源动力   54篇
轻工业   80篇
水利工程   9篇
石油天然气   4篇
无线电   40篇
一般工业技术   119篇
冶金工业   28篇
原子能技术   5篇
自动化技术   78篇
  2024年   1篇
  2023年   14篇
  2022年   35篇
  2021年   46篇
  2020年   32篇
  2019年   36篇
  2018年   41篇
  2017年   45篇
  2016年   39篇
  2015年   24篇
  2014年   21篇
  2013年   62篇
  2012年   34篇
  2011年   54篇
  2010年   36篇
  2009年   38篇
  2008年   39篇
  2007年   37篇
  2006年   27篇
  2005年   17篇
  2004年   11篇
  2003年   5篇
  2002年   11篇
  2001年   6篇
  2000年   1篇
  1999年   8篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   3篇
  1992年   8篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1978年   3篇
排序方式: 共有789条查询结果,搜索用时 0 毫秒
91.
MXenes, a fast-growing family of two-dimensional (2D) transition metal carbides/nitrides, are promising for electronics and energy storage applications. Mo2CTx MXene, in particular, has demonstrated a higher capacity than other MXenes as an anode for Li-ion batteries. Yet, such enhanced capacity is accompanied by slow kinetics and poor cycling stability. Herein, it is revealed that the unstable cycling performance of Mo2CTx is attributed to the partial oxidation into MoOx with structural degradation. A laser-induced Mo2CTx/Mo2C (LS-Mo2CTx) hybrid anode has been developed, of which the Mo2C nanodots boost redox kinetics, and the laser-reduced oxygen content prevents the structural degradation caused by oxidation. Meanwhile, the strong connections between the laser-induced Mo2C nanodots and Mo2CTx nanosheets enhance conductivity and stabilize the structure during charge–discharge cycling. The as-prepared LS-Mo2CTx anode exhibits an enhanced capacity of 340 mAh g−1 vs 83 mAh g−1 (for pristine) and an improved cycling stability (capacity retention of 106.2% vs 80.6% for pristine) over 1000 cycles. The laser-induced synthesis approach underlines the potential of MXene-based hybrid materials for high-performance energy storage applications.  相似文献   
92.
Flight controllers for micro-air UAVs are generally designed using proportional-integral-derivative (PID) methods, where the tuning of gains is difficult and time-consuming, and performance is not guaranteed. In this paper, we develop a rigorous method based on the sliding mode analysis and nonlinear backstepping to design a PID controller with guaranteed performance. This technique provides the structure and gains for the PID controller, such that a robust and fast response of the UAV (unmanned aerial vehicle) for trajectory tracking is achieved. First, the second-order sliding variable errors are used in a rigorous nonlinear backstepping design to obtain guaranteed performance for the nonlinear UAV dynamics. Then, using a small angle approximation and rigorous geometric manipulations, this nonlinear design is converted into a PID controller whose structure is naturally determined through the backstepping procedure. PID gains that guarantee robust UAV performance are finally computed from the sliding mode gains and from stabilizing gains for tracking error dynamics. We prove that the desired Euler angles of the inner attitude controller loop are related to the dynamics of the outer backstepping tracker loop by inverse kinematics, which provides a seamless connection with existing built-in UAV attitude controllers. We implement the proposed method on actual UAV, and experimental flight tests prove the validity of these algorithms. It is seen that our PID design procedure yields tighter UAV performance than an existing popular PID control technique.  相似文献   
93.

In cloud computing, resources are dynamically provisioned and delivered to users in a transparent manner automatically on-demand. Task execution failure is no longer accidental but a common characteristic of cloud computing environment. In recent times, a number of intelligent scheduling techniques have been used to address task scheduling issues in cloud without much attention to fault tolerance. In this research article, we proposed a dynamic clustering league championship algorithm (DCLCA) scheduling technique for fault tolerance awareness to address cloud task execution which would reflect on the current available resources and reduce the untimely failure of autonomous tasks. Experimental results show that our proposed technique produces remarkable fault reduction in task failure as measured in terms of failure rate. It also shows that the DCLCA outperformed the MTCT, MAXMIN, ant colony optimization and genetic algorithm-based NSGA-II by producing lower makespan with improvement of 57.8, 53.6, 24.3 and 13.4 % in the first scenario and 60.0, 38.9, 31.5 and 31.2 % in the second scenario, respectively. Considering the experimental results, DCLCA provides better quality fault tolerance aware scheduling that will help to improve the overall performance of the cloud environment.

  相似文献   
94.
In this paper, a 9-bit 1.3 GS/s single channel SAR ADC is presented. In conventional SAR ADCs, the capacitive DAC size grows exponentially with respect to converter resolution. This results in both signal bandwidth and conversion speed reduction. The proposed architecture implements binary search through a redundant capacitive DAC for the 5 first MSBs and through programmable comparator thresholds for the remaining 4 LSBs. The DAC capacitance at the front-end remains small enough to achieve high sampling rate with increased input bandwidth. Two asynchronously clocked alternate comparators are used additionally to improve conversion speed. The ADC is designed and simulated in 28 nm FD-SOI CMOS. It consumes 4.1 mW from a 1 V supply, while achieving a SNDR of 52.1 dB and a Figure-of-Merit of 11.4 fJ/conversion-step.  相似文献   
95.
The literature on free vibration analysis of Bernoulli-Euler and Timoshenko piles embedded in elastic soil is plenty, but that of Reddy-Bickford piles partially embedded in elastic soil with/without axial force effect is fewer. The soil that the pile partially embedded in is idealized by Winkler model and is assumed to be two-layered. The pile part above the soil is called the first region and the parts embedded in the soil are called the second and the third region, respectively. It is assumed that the behaviour of the material is linear-elastic, that axial force along the pile length to be constant and the upper end of the pile that is semi-rigid supported against rotation is modelled by an elastic spring. The governing differential equations of motion of the rectangular pile in free vibration are derived using Hamilton’s principle and Winkler hypothesis. The terms are found directly from the solutions of the differential equations that describe the deformations of the cross-section according to the high-order theory. The models have six degrees of freedom at the two ends, one transverse displacement and two rotations, and the end forces are a shear force and two end moments. Natural frequencies of the pile are calculated using transfer matrix and the secant method for non-trivial solution of linear homogeneous system of equations obtained due to values of axial forces acting on the pile, total and embedded lengths of the pile, the linear-elastic rotational restraining stiffness at the upper end of the pile and to the boundary conditions of the pile. Two different boundary conditions are considered in the study. For the first boundary condition, the pile’s end at the first region is semi-rigid connected and not restricted for horizontal displacement and the end at the third region is free and for the second boundary condition, the pile’s end at the first region is semi-rigid connected and restricted for horizontal displacement and the end at the third region is fixed supported. The calculated natural frequencies of semi-rigid connected Reddy-Bickford pile embedded in elastic soil are given in tables and compared with results of Timoshenko pile model.  相似文献   
96.
A uniform line integral representation is derived for edge-diffracted fields by using the modified theory of physical optics and uniform asymptotic evaluation methods. The method is applied to the problem of diffraction of plane waves by a semi-infinite edge, which creates tip-diffracted fields with edge-diffracted waves. The uniform diffracted fields are plotted and examined numerically.  相似文献   
97.
An alternative interpretation of the phenomenon of edge diffraction is proposed according to a new separation of the Fresnel function. The subfields are investigated in the problem of diffraction of a plane wave by a perfectly conducting half-plane, and the results are compared numerically with other interpretations.  相似文献   
98.
99.
A spectrum simulation method is described for use in the development and transfer of multivariate calibration models from near-infrared spectra. By use of previously measured molar absorptivities and solvent displacement factors, synthetic calibration spectra are computed using only background spectra collected with the spectrometer for which a calibration model is desired. The resulting synthetic calibration set is used with partial least squares regression to form the calibration model. This methodology is demonstrated for use in the analysis of physiological levels of glucose (1-30 mM) in an aqueous matrix containing variable levels of alanine, ascorbate, lactate, urea, and triacetin. Experimentally measured data from two different Fourier transform spectrometers with different noise levels and stabilities are used to evaluate the simulation method. With the more stable instrument (A), well-performing calibration models are obtained, producing a standard error of prediction (SEP) of 0.70 mM. With the less stable instrument (B), the calibration based solely on synthetic spectra is less successful, producing an SEP value of 1.58 mM. For cases in which the synthetic spectra do not describe enough spectral variance, an augmentation protocol is evaluated in which the synthetic calibration spectra are augmented with the spectra of a small number of experimentally measured calibration samples. For instruments A and B, respectively, augmentation with measured spectra of nine samples lowers the SEP values to 0.64 and 0.85 mM.  相似文献   
100.
Automated pattern recognition methodology is described for the detection of signatures of volatile organic compounds from passive multispectral infrared imaging data collected from an aircraft platform. Data are acquired in an across-track scanning mode with a downward-looking line scanner based on 8 to 16 spectral channels in the 8-14 and 3-5 microm spectral ranges. Two controlled release experiments are performed in which plumes of ethanol are generated and detected from aircraft overflights at altitudes of 2200 to 2800 ft (671 to 853 m). In addition, a methanol release from a chemical manufacturing facility is monitored. Automated classifiers are developed by application of piecewise linear discriminant analysis to the calibrated, registered, and preprocessed radiance data acquired by the line scanner. Preprocessing steps evaluated include contrast enhancement, temperature-emissivity separation, feature selection, and feature extraction/noise reduction by the minimum noise fraction (MNF) transform. Successful classifiers are developed for both compounds and are tested with data not used in the classifier development. Separation of temperature and emissivity by use of the alpha residual calculation is found to reduce false positive detections to a negligible level, and the MNF transform is shown to enhance detection sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号