全文获取类型
收费全文 | 907篇 |
免费 | 75篇 |
国内免费 | 10篇 |
专业分类
电工技术 | 19篇 |
综合类 | 1篇 |
化学工业 | 331篇 |
金属工艺 | 14篇 |
机械仪表 | 14篇 |
建筑科学 | 25篇 |
能源动力 | 42篇 |
轻工业 | 155篇 |
水利工程 | 11篇 |
石油天然气 | 14篇 |
无线电 | 75篇 |
一般工业技术 | 155篇 |
冶金工业 | 17篇 |
原子能技术 | 7篇 |
自动化技术 | 112篇 |
出版年
2024年 | 2篇 |
2023年 | 25篇 |
2022年 | 70篇 |
2021年 | 85篇 |
2020年 | 57篇 |
2019年 | 79篇 |
2018年 | 73篇 |
2017年 | 84篇 |
2016年 | 75篇 |
2015年 | 44篇 |
2014年 | 59篇 |
2013年 | 77篇 |
2012年 | 46篇 |
2011年 | 47篇 |
2010年 | 32篇 |
2009年 | 30篇 |
2008年 | 17篇 |
2007年 | 17篇 |
2006年 | 13篇 |
2005年 | 7篇 |
2004年 | 5篇 |
2003年 | 5篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 4篇 |
1990年 | 2篇 |
1987年 | 1篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1979年 | 4篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有992条查询结果,搜索用时 15 毫秒
61.
Wastewater sludge usually contains large amounts of water and organic materials; therefore, its stabilization and dewatering are of particular importance. The present study aimed to investigate the possibility of sludge stabilization and dewatering from wastewater sludge by bioleaching (Thiobacillus ferrooxidans), Fenton/bioleaching, and bioleaching/Fenton-like processes. To evaluate sludge stabilization and dewatering, specific resistance to filtration (SRF), volatile suspended solids (VSS), total suspended solids (TSS), and soluble chemical oxygen demand (SCOD) were measured. In biological treatment with T. ferrooxidans with Fe2+ (2?g?L?1), 99.75, 33, 37, and 72% reduction were observed in SRF, VSS, TSS, SCOD, respectively, after 2 days. In the combined treatment of Fenton before bioleaching (including Fe2+ 2?g?L?1 and H2O2 1?g?L?1 with Fenton oxidation for 30?min followed by biological treatment with T. ferrooxidans for 2 days), the reduction rates in TSS, VSS, SCOD, and SRF were 40.18, 40.88, 60.95, and 75.43%, respectively. In treatment with the combined method of bioleaching before Fenton-like oxidation, the removal rates of the aforementioned parameters were 52.5, 54.4, 88, and 99.82%, respectively. In comparison to Fenton oxidation and bioleaching alone, combined biological method of bioleaching/Fenton-like oxidation using a lower dose of H2O2 and Fe2+ significantly improved sludge dewatering and stabilization. 相似文献
62.
Gouhar Azadi Zahra Taherinia Arash Ghorbani-Choghamarani 《Journal of Sulfur Chemistry》2017,38(3):303-313
One-pot synthesis of symmetrical diaryl/alkyl sulfides in high yields from the reaction between aryl/alkyl halides and S8 can be carried out in a short period, using Fe3O4@SiO2@His@Ni(II) as a reusable catalyst. The present approach offers the advantages of a clean reaction, simple methodology and high efficiency, and avoids the use of a toxic catalyst. 相似文献
63.
Synthesis and Characterization of Novel Surfactants Based on 2-Hydroxy-4-(methylthio)butanoic Acid: 2. Non-ionic Surfactants 下载免费PDF全文
64.
Hamed Bazrafshan Razieh Shajareh Touba Zahra Alipour Tesieh Saeideh Dabirnia Bahram Nasernejad 《Chemical Engineering Communications》2017,204(10):1105-1112
In this study, Co3O4 nanosheets were synthesized through hydrothermal method using cobalt nitrate hexahydrate. X-ray diffraction, diffuse reflectance spectra, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy were applied to investigate the properties of as-synthesized samples. Ultimately, the electrochemical and photoelectrochemical properties were evaluated by Mott–Schottky analysis and measuring photoconversion efficiency of Co3O4 nanosheets. The results indicated that Co3O4 nanosheets exhibited a maximum efficiency of 0.92% for water electrolysis under simulated 1.5 global sunlight air mass, which further suggests the excellent potential of Co3O4 nanosheets for application in hydrogen generation through photocatalytic water splitting. 相似文献
65.
Zahra Hamrahi 《分离科学与技术》2017,52(3):544-556
In this study, permeation of carbon dioxide (CO2) and methane (CH4) through the polycarbonate/polyethylene glycol (PC/PEG) blend membrane was investigated. The effect of PEG content (0–5 wt%) on the permeability and selectivity was studied. Permeability measurements were carried out at pressures of 1–7 bar and at room temperature. The membranes were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and density measurement. The results revealed that the PC/PEG blends are miscible/partially miscible without considerable micro-phase separation. The effect of PEG content and gas pressure on the diffusion and solubility of coefficients were also investigated and analyzed. It was concluded that the most influential parameter for the permeation is the diffusion coefficient of the gases. The permeability and selectivity decrease as the operating pressure and PEG content are increased. Furthermore, the results showed that the addition of 5 wt% of PEG into PC increases the CO2/CH4 selectivity from 26.6 ± 0.99 to 40.9 ± 2.14 (more than 53%) at 1 bar. 相似文献
66.
67.
68.
Masoud Hasany Soheila Yaghmaei Mohammad Mahdi Mardanpour Zahra Ghasemi Naraghi 《中国化学工程学报》2017,25(12):1847-1855
A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performance and electrochemical characteristics of MFCs were evaluated in different environmental conditions (in complete darkness and presence of light), and different flow patterns of batch and continuous in four hydraulic retention times from 8 to 30 h. Changes in chemical oxygen demand, and nitrate and phosphate concentrations were evaluated. In contrast to the microbial fuel cell operated in darkness (D-MFC) with a stable open circuit voltage of 700 mV, presence of light led to growth of other species, and consecutively low and unsteady open circuit voltage. Although the performance of theMFC subjected to light (L-MFC)was quite lowand unsteady in dynamic state (internal resistance = 100 Ω, power density = 5.15 W·m-3), it reached power density of 9.2 W·m-3 which was close to performance of D-MFC (internal resistance = 50 Ω, power density = 10.3 W·m-3). Evaluated only for D-MFC, the coulombic efficiency observed in batch mode (30%) was quite higher than the maximum acquired in continuous mode (9.6%) even at the highest hydraulic retention time. In this study, changes in phosphate and different types of nitrogen existing in dairy wastewater were investigated for the first time. At hydraulic retention time of 8 h, the orthophosphate concentration in effluent was 84% higher compared to influent. Total nitrogen and total Kjeldahl nitrogen were reduced 70% and 99% respectively at hydraulic retention time of 30 h, while nitrate and nitrite concentrations increased. The microbial electrolysis cell (MEC), revamped from D-MFC, showed the maximum gas production of 0.2 m3 H2·m-3·d-1 at 700 mV applied voltage. 相似文献
69.
The purpose of this study was the production of copolymers and terpolymers with highly hydrophilic–hydrophobic properties, using inexpensive and available monomers as potential enhancing oil recovery (EOR) and water production control agents for high-temperature and high-salinity (HTHS) oil reservoirs. For this purpose, several copolymers and terpolymers with different molar percentage of acrylamide/styrene, acrylamide/maleic anhydride, and acrylamide/styrene/maleic anhydride were synthesized by the inverse emulsion polymerization technique. The presence of hydrophobic styrene and hydrophilic maleic anhydride monomers in the copolymer and terpolymer structure, provided some unique properties compared to polyacrylamide, was confirmed by several analyses including HNMR, elemental analysis, FTIR, SEM, TGA, and DSC. Simulating HTHS oil reservoir condition under high salinity, temperature, and shear rate, the rheological studies suggested unlike traditional EOR agents such as polyacrylamide, the viscosity of the copolymer, and terpolymer aqueous solutions showed a considerable increase after a critical polymer concentration and less reduction with the salt increment at both ambient and elevated temperatures. Furthermore, the swelling ratio of the insoluble terpolymers measured versus the time and temperature in salt water increased with the maleic anhydride mole fraction, decreased with the salt concentration, and showed a maximum value at around 57 °C. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47753. 相似文献
70.
Silicon - Little is known on the impact of silicon (Si) nutrition in halophytes. Accordingly, response of Si accumulating halophyte Puccinellia distans to Si nutrition was investigated. The... 相似文献