全文获取类型
收费全文 | 113篇 |
免费 | 8篇 |
国内免费 | 4篇 |
专业分类
电工技术 | 5篇 |
金属工艺 | 39篇 |
机械仪表 | 13篇 |
水利工程 | 6篇 |
武器工业 | 3篇 |
无线电 | 28篇 |
一般工业技术 | 22篇 |
自动化技术 | 9篇 |
出版年
2024年 | 4篇 |
2023年 | 6篇 |
2022年 | 8篇 |
2021年 | 4篇 |
2020年 | 5篇 |
2019年 | 2篇 |
2018年 | 6篇 |
2017年 | 8篇 |
2016年 | 4篇 |
2015年 | 6篇 |
2014年 | 18篇 |
2013年 | 7篇 |
2012年 | 3篇 |
2011年 | 4篇 |
2010年 | 9篇 |
2009年 | 4篇 |
2008年 | 6篇 |
2007年 | 1篇 |
2006年 | 3篇 |
2005年 | 4篇 |
2004年 | 4篇 |
2003年 | 5篇 |
2002年 | 4篇 |
排序方式: 共有125条查询结果,搜索用时 15 毫秒
81.
无保护层激光冲击强化是一种可以诱导高数值残余压应力和微观组织变化来达到提高金属材料疲劳性能目的的先进表面强化技术。本文的研究目标是通过采用无保护层激光冲击强化提高K24镍基合金的抗疲劳特性。首先,采用高周振动疲劳试验验证了无保护层激光冲击强化效果,疲劳试验结果表明,强化后K24镍基合金疲劳强度相比于未强化试件的282 MPa提高到328 MPa。其次,本文通过采用扫描电镜(SEM)观察、残余应力和显微硬度测试研究了多次冲击对K24镍基合金机械性能以及断口形貌的影响。残余应力测试结果表明,无保护层激光冲击强化后表面形成了压应力,表面最大达到-595 MPa,且影响深度为150 μm。同样3次冲击后表面显微硬度增加到526 HV0.5,深度约为100μm。断口形貌特征表明强化后裂纹源区更加平坦,同时裂纹扩展速率降低。最后,基于疲劳试验和力学性能测试结果进一步讨论了激光冲击强化提高疲劳强度的影响机制。 相似文献
82.
83.
针对在卷积神经网络中定义损失函数为余弦裕度损失函数(Cosineface)后导致收敛变慢以及在实际使用过程中使用L2范数衡量特征相似度存在缺陷的问题,提出了斜率可变的余弦裕度损失函数(Kcosine)和多重范数计算特征相似度的方法。该方法通过在余弦裕度损失函数的基础上添加余弦斜率因子,使得损失函数类内约束随着余弦值的增大而逐渐增强,显式地缩小类内距离,同时利用L2范数和L∞范数构建人脸特征相似度向量,并通过支撑向量机(SVM)实现分类,修正L2范数空间衡量的不稳定性。在LFW和Agedb的数据库上1∶1验证实验表明,改进的损失函数不仅加快了训练的收敛速度,并且将类内距离减少15%以上,同时通过使用多重范数特征代替L2范数,可以将识别率均值提升0.1%左右,标准差也有所降低。 相似文献
84.
85.
86.
87.
88.
提出了一种简易的"两步"标定法,即非线性模型摄像机标定和"四点"位姿估计。该标定法充分使用了OpenCV中现有的计算机视觉算法,与传统的手眼标定法和基于商用视觉库的标定法相比,省去了大量的计算、节约了开发成本和便于产品升级。摄像机标定实现了图像坐标系与世界坐标系之间的转换;位姿估计实现了机械手坐标系与世界坐标系之间的转换,从而推算出了图像坐标系与机械手坐标系之间的转换,其平均投影误差约为0.727个像素。该标定方法配合码垛机器人视觉定位系统执行包装件内装物码垛作业,现场测试结果表明,可以使码垛精度达到±1 mm,能够满足包装行业内装物现场应用要求。 相似文献
89.
激光冲击TC17钛合金疲劳裂纹扩展试验 总被引:5,自引:1,他引:4
为研究激光冲击强化对钛合金试件疲劳性能的影响,在标准试件的裂纹扩展路径上设计了全强化和间隔强化两种不同的强化方案,研究激光冲击强化对试件疲劳寿命和裂纹稳定扩展时速率的影响规律,利用有限元数值模拟和X射线残余应力测试获得了试件的残余应力场分布状态,并对比分析了试件的断口形貌和微观组织特征。结果表明:相比于未强化试件,激光冲击强化后试件的平均疲劳寿命分别提高了2.14倍和1.90倍,两种不同的冲击强化方法分别降低钛合金试件的裂纹扩展速率24%和15%。间隔强化后试件表面产生-512 MPa的最大残余压应力,裂纹扩展的C′值为-7.3,m值为2.6,而强化间隔区引入最大值为82.4 MPa的残余拉应力,裂纹扩展速率急剧升高,C′值减小至-13.6,m值为8.0。当裂纹扩展到强化区时,扩展速率再次降低,激光冲击强化对TC17钛合金疲劳裂纹扩展有显著的抑制作用。 相似文献
90.
AISI 9310 钢是一种高强度渗碳齿轮钢,具有较好的韧性。服役过程中,齿面极易发生磨损和接触疲劳失效损伤。为有效改善 9310 齿轮钢的耐磨损和抗接触疲劳性能,实现磨损和接触疲劳性能协同强化,提出采用激光冲击(LSP)+渗碳(LC) 复合强化的技术思路,采用激光冲击强化技术对 AISI 9310 钢基体进行前处理,再对其开展低温渗碳热处理。为进一步研究 LSP 和 LC 对 9310 齿轮钢微观组织形貌的影响规律,利用光学显微镜、扫描电子显微镜和电子背散射衍射表征渗碳层微观组织形貌和截面方向的晶体学特征,并对试件截面方向的硬度进行考核。研究结果表明,AISI 9310 钢的渗碳层厚度约为 14 μm, 最大硬度约为 305.67 HV,硬化层厚度约 300 μm;LSP 前处理后,渗碳层厚度提升到 23 μm,最大硬度提升到 328.87HV,硬化层厚度提升到约 700 μm。对比发现,LSP 前处理分别可将 9310 钢低温渗碳层厚度提升 64.3%,渗碳层硬度提升 23.17 HV, 硬化层深度提升 133%。这主要是低温渗碳对 9310 钢的 Kernel 平均取向差(KAM)和小角度晶界影响较小,但是 LSP 前处理可引入塑性变形并提升小角度晶界比例,有助于碳元素扩散,促进 9310 钢低温渗碳行为,提升渗碳层厚度、硬化层硬度和厚度。初步解决了 LSP 前处理诱导微观组织缺陷促进碳元素扩散的问题,可为 LSP 复合强化提升航空齿轮关键部件服役寿命提供技术支撑。 相似文献