首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   20篇
电工技术   5篇
化学工业   165篇
金属工艺   5篇
机械仪表   10篇
建筑科学   17篇
能源动力   4篇
轻工业   47篇
水利工程   2篇
石油天然气   4篇
无线电   27篇
一般工业技术   63篇
冶金工业   109篇
原子能技术   6篇
自动化技术   29篇
  2023年   5篇
  2022年   27篇
  2021年   20篇
  2020年   12篇
  2019年   5篇
  2018年   9篇
  2017年   12篇
  2016年   12篇
  2015年   14篇
  2014年   15篇
  2013年   25篇
  2012年   17篇
  2011年   37篇
  2010年   23篇
  2009年   30篇
  2008年   20篇
  2007年   22篇
  2006年   11篇
  2005年   13篇
  2004年   10篇
  2003年   6篇
  2002年   16篇
  2001年   9篇
  2000年   12篇
  1999年   15篇
  1998年   20篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   11篇
  1992年   5篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   5篇
  1976年   4篇
  1974年   1篇
排序方式: 共有493条查询结果,搜索用时 15 毫秒
21.
The presence of enterococci in Pecorino Abruzzese cheese during ripening was evaluated. Counts were high, especially in fully ripened summer batches. Seventy strains were isolated and identified based on phenotypical and genotypical features as Enterococcus faecium (48.5%), Enterococcus faecalis (40%), and Enterococcus durans (11.5%), with the first species predominant in spring batches and the second predominant in summer batches. High biodiversity was revealed by random amplification of polymorphic DNA and a PCR assay, suggesting the presence of autochthonous strains. E. faecium isolates were the most resistant to the tested antibiotics, especially to erythromycin, chloramphenicol, and penicillin, but all strains were susceptible to vancomycin, as confirmed by the absence of vanA and vanB genes. The presence of some virulence determinants was investigated, revealing the diffusion of aggregation substance (asal) and gelatinase (gelE) genes in 37.5% of E. faecalis strains. However, none of the isolates produced gelatinase in vitro, suggesting the presence of silent genes. The virulence genes were absent in E. durans. Among E. faecium strains, only Lab 41/1 possessed gelE and asal, whose presence previously has been reported only in E. faecalis. Decarboxylating activity was revealed for phenylalanine (27% of the strains) and tyrosine (96%) but not histidine. The presence of a tyrosine decarboxylase-encoding gene was observed for all strains. A comparison of these results with those of previous studies of clinical and food isolates indicates that enterococci from Pecorino Abruzzese cheese have low pathogenic potential.  相似文献   
22.
23.
Multistructured membranes based on ultrafine fibers of polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA) and TiO2 nanoparticles have been obtained by electrohydrodynamic (EHD) technologies, for active filter media manufacturing. Process optimization of the nanofibers based layers has been investigated by response surface methodology (RSM) in order to predict the domain of the parameters where the smallest fiber diameter can be achieved. A quantitative relationship between electrospinning parameters and the responses (mean diameter and standard deviation) was established and then the final multi-layers structure of nanofibers and nanoparticles has been achieved for a controlled and robust process. The nanostructured membranes have been characterized by SEM imaging, EDAX, TGA analysis and water vapour permeability and their photocatalytic activity has been tested on VOCs degradation.  相似文献   
24.
In vitro whole‐organism screens of Trypanosoma brucei with representative examples of brain‐penetrant microtubule (MT)‐stabilizing agents identified lethal triazolopyrimidines and phenylpyrimidines with sub‐micromolar potency. In mammalian cells, these antiproliferative compounds disrupt MT integrity and decrease total tubulin levels. Their parasiticidal potency, combined with their generally favorable pharmacokinetic properties, which include oral bioavailability and brain penetration, suggest that these compounds are potential leads against human African trypanosomiasis.  相似文献   
25.
Herein we describe the design, multicomponent synthesis, and biological, molecular modeling and ADMET studies, as well as in vitro PAMPA‐blood–brain barrier (BBB) analysis of new tacrine–ferulic acid hybrids (TFAHs). We identified (E)‐3‐(hydroxy‐3‐methoxyphenyl)‐N‐{8[(7‐methoxy‐1,2,3,4‐tetrahydroacridin‐9‐yl)amino]octyl}‐N‐[2‐(naphthalen‐2‐ylamino)2‐oxoethyl]acrylamide (TFAH 10 n ) as a particularly interesting multipotent compound that shows moderate and completely selective inhibition of human butyrylcholinesterase (IC50=68.2 nM ), strong antioxidant activity (4.29 equiv trolox in an oxygen radical absorbance capacity (ORAC) assay), and good β‐amyloid (Aβ) anti‐aggregation properties (65.6 % at 1:1 ratio); moreover, it is able to permeate central nervous system (CNS) tissues, as determined by PAMPA‐BBB assay. Notably, even when tested at very high concentrations, TFAH 10 n easily surpasses the other TFAHs in hepatotoxicity profiling (59.4 % cell viability at 1000 μM ), affording good neuroprotection against toxic insults such as Aβ1–40, Aβ1–42, H2O2, and oligomycin A/rotenone on SH‐SY5Y cells, at 1 μM . The results reported herein support the development of new multipotent TFAH derivatives as potential drugs for the treatment of Alzheimer′s disease.  相似文献   
26.
Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox‐active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid–methylene blue (MB), N‐benzyl‐1,4‐dihydronicotinamide (BNAH)–MB, BNAH–lumiflavine, BNAH–riboflavin (RF), and NADPH–FAD–E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4‐aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4‐aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4‐aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme–FeIII results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme–FeIII complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme–FeIII. The quinoline or arylmethanol reenters the DV, and so transfers more heme–FeIII out of the DV. In this way, the 4‐aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme–FeIII and thence free FeIII concentrations in the cytosol. The iron species enter into redox cycles through reduction of FeIII to FeII largely mediated by reduced flavin cofactors and likely also by NAD(P)H–Fre. Generation of ROS through oxidation of FeII by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca2+ transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms.  相似文献   
27.
Serum albumin is one of the most widely studied proteins. It is the most abundant protein in plasma with a typical concentration of 5 g/100 mL and the principal transporter of fatty acids in plasma. While the crystal structures of human serum albumin (HSA) free and in complex with fatty acids, hemin, and local anesthetics have been characterized, no crystallographic models are available on bovine serum albumin (BSA), presumably because of the poor diffraction power of existing hexagonal BSA crystals. Here, the crystallization and diffraction data of a new BSA crystal form, obtained by the hanging drop method using MPEG 5K as precipitating agent, are presented. The crystals belong to space group C2, with unit-cell parameters a = 216.45 Å, b = 44.72 Å, c = 140.18 Å, β = 114.5°. Dehydration was found to increase the diffraction limit of BSA crystals from ~8 Å to 3.2 Å, probably by improving the packing of protein molecules in the crystal lattice. These results, together with a survey of more than 60 successful cases of protein crystal dehydration, confirm that it can be a useful procedure to be used in initial screening as a method of improving the diffraction limits of existing crystals.  相似文献   
28.
The epidermal growth factor receptor (EGFR), through the MAP kinase and PI3K-Akt-mTOR axis, plays a pivotal role in colorectal cancer (CRC) pathogenesis. The membrane-associated NEU3 sialidase interacts with and desialylates EGFR by promoting its dimerization and downstream effectors’ activation. Among the targeted therapies against EGFR, the monoclonal antibody cetuximab is active only in a subgroup of patients not carrying mutations in the MAP kinase pathway. In order to better understand the EGFR-NEU3 interplay and the mechanisms of pharmacological resistance, we investigated the role of NEU3 deregulation in cetuximab-treated CRC cell lines transiently transfected with NEU3 using Western blot analysis. Our results indicate that NEU3 overexpression can enhance EGFR activation only if EGFR is overexpressed, indicating the existence of a threshold for NEU3-mediated EGFR activation. This enhancement mainly leads to the constitutive activation of the MAP kinase pathway. Consequently, we suggest that the evaluation of NEU3 expression cannot entirely substitute the evaluation of EGFR because EGFR-negative cases cannot be stimulated by NEU3. Furthermore, NEU3-mediated hyperactivation of EGFR is counterbalanced by the administration of cetuximab, hypothesizing that a combined treatment of NEU3- and EGFR-targeted therapies may represent a valid option for CRC patients, which must be investigated in the future.  相似文献   
29.
In this work oxidation of benzene and ethenylbenzene (IUPAC name for styrene) as single compounds and in binary mixtures over a Pt honeycomb catalyst were investigated. Both aromatic compounds showed zero-order kinetics over a wide concentration range. The ethenylbenzene reaction rate was affected weakly by the presence of benzene, whereas benzene oxidation was inhibited strongly by ethenylbenzene. The Mars-van Krevelen mechanism (which is generally accepted for single aromatic compound oxidation kinetics) gave rise to inconsistencies in describing mixture behaviour. A different kinetic model is proposed, where benzene reacts from the gas phase and ethenylbenzene is adsorbed on the catalyst competing with oxygen for active sites. This model was able to interpret the oxidation of mixtures quite satisfactorily.  相似文献   
30.
(Ba, Sr)‐exchanged zeolite A with composition Ba0.74Sr0.22Na0.04Al2Si2O8 was prepared by cation exchange; a mild thermal treatment converts into an amorphous phase. Successive crystallization and sintering behavior was studied by XRD, DTA, and thermodilatometric analysis. The results point out the activation of viscous flow sintering mechanisms between 900°C and 1050°C. The densification process starts when the amorphous phase reaches its glass transition temperature (897°C) and finishes when the material crystallizes forming hexacelsian. The application of an external pressure in such temperature range allows to achieve an almost complete densification, the material transforming at 1300°C into dense monoclinic celsian much below the typical processing temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号