首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   14篇
电工技术   2篇
化学工业   50篇
金属工艺   4篇
建筑科学   3篇
能源动力   3篇
轻工业   28篇
水利工程   3篇
石油天然气   2篇
无线电   9篇
一般工业技术   30篇
冶金工业   8篇
原子能技术   2篇
自动化技术   68篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   11篇
  2015年   11篇
  2014年   15篇
  2013年   16篇
  2012年   14篇
  2011年   22篇
  2010年   7篇
  2009年   10篇
  2008年   15篇
  2007年   6篇
  2006年   11篇
  2005年   6篇
  2004年   7篇
  2003年   9篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有212条查询结果,搜索用时 129 毫秒
71.
The gamut mapping algorithm is one of the most promising methods to achieve computational color constancy. However, so far, gamut mapping algorithms are restricted to the use of pixel values to estimate the illuminant. Therefore, in this paper, gamut mapping is extended to incorporate the statistical nature of images. It is analytically shown that the proposed gamut mapping framework is able to include any linear filter output. The main focus is on the local n-jet describing the derivative structure of an image. It is shown that derivatives have the advantage over pixel values to be invariant to disturbing effects (i.e. deviations of the diagonal model) such as saturated colors and diffuse light. Further, as the n-jet based gamut mapping has the ability to use more information than pixel values alone, the combination of these algorithms are more stable than the regular gamut mapping algorithm. Different methods of combining are proposed. Based on theoretical and experimental results conducted on large scale data sets of hyperspectral, laboratory and real-world scenes, it can be derived that (1) in case of deviations of the diagonal model, the derivative-based approach outperforms the pixel-based gamut mapping, (2) state-of-the-art algorithms are outperformed by the n-jet based gamut mapping, (3) the combination of the different n-jet based gamut mappings provide more stable solutions, and (4) the fusion strategy based on the intersection of feasible sets provides better color constancy results than the union of the feasible sets.  相似文献   
72.
The importance of medical image segmentation increases in fields like treatment planning or computer aided diagnosis. For high quality automatic segmentations, algorithms based on statistical shape models (SSMs) are often used. They segment the image in an iterative way. However, segmentation experts and other users can only asses the final segmentation results, as the segmentation is performed in a “black box manner”. Users cannot get deeper knowledge on how the (possibly bad) output was produced. Moreover, they do not see whether the final output is the result of a stabilized process. We present a novel Visual Analytics method, which offers this desired deeper insight into the image segmentation. Our approach combines interactive visualization and automatic data analysis. It allows the expert to assess the quality development (convergence) of the model both on global (full organ) and local (organ areas, landmarks) level. Thereby, local patterns in time and space, e.g., non-converging parts of the organ during the segmentation, can be identified. The localization and specifications of such problems helps the experts creating segmentation algorithms to identify algorithm drawbacks and thus it may point out possible ways how to improve the algorithms systematically. We apply our approach on real-world data showing its usefulness for the analysis of the segmentation process with statistical shape models.  相似文献   
73.
74.
When an image is filtered with a Gaussian of width σ and σ is considered as an extra dimension, the image is extended to a Gaussian scale-space (GSS) image. In earlier work it was shown that the GSS-image contains an intensity-based hierarchical structure that can be represented as a binary ordered rooted tree. Key elements in the construction of the tree are iso-intensity manifolds and scale-space saddles.A scale-space saddle is a critical point in scale space. When it connects two different parts of an iso-intensity manifold, it is called “dividing”, otherwise it is called “void”. Each dividing scale-space saddle is connected to an extremum in the original image via a curve in scale space containing critical points. Using the nesting of the iso-intensity manifolds in the GSS-image and the dividing scale-space saddles, each extremum is connected to another extremum. In the tree structure, the dividing scale-space saddles form the connecting elements in the hierarchy: they are the nodes of the tree. The extrema of the image form the leaves, while the critical curves are represented as the edges.To identify the dividing scale-space saddles, a global investigation of the scale-space saddles and the iso-intensity manifolds through them is needed.In this paper an overview of the situations that can occur is given. In each case it is shown how to distinguish between void and dividing scale-space saddles. Furthermore, examples are given, and the difference between selecting the dividing and the void scale-space saddles is shown. Also relevant geometric properties of GSS images are discussed, as well as their implications for algorithms used for the tree extraction.As main result, it is not necessary to search through the whole GSS image to find regions related to each relevant scale-space saddle. This yields a considerable reduction in complexity and computation time, as shown in two examples.  相似文献   
75.
We present detailed investigations on the optical properties of PbSe nanocrystals. The absorption spectra of monodisperse, quasispherical nanocrystals exhibit sharp features as a result of distinct optical transitions. To study the size dependence, absorption spectra of nanocrystals ranging from 3.4 to 10.9 nm in diameter are analysed and a total of 11 distinct optical transitions are identified. The assignment of the various optical transitions is discussed and compared to theoretically calculated transition energies. By plotting all transitions as a function of nanocrystal size (D) we find that the energy (E) changes with the following relationship [Formula: see text] for the lowest energy transitions. The transition energy extrapolates to approximately 0.3 eV for infinite crystal size, in agreement with the bandgap of bulk PbSe at the L-point in the Brillouin zone. In addition, high-energy transitions are observed, which extrapolate to 1.6 eV for infinite crystal size, which is in good agreement with the bulk bandgap of PbSe at the Sigma-point in the Brillouin zone. Tight-binding calculations confirm that the high-energy transitions originate from the Sigma-point in the Brillouin zone. The Sigma-character of the high-energy transitions may be of importance to explain the mechanism behind multiple exciton generation in PbSe nanocrystals.  相似文献   
76.
It has been argued that the communication of emotions is more difficult in computer-mediated communication (CMC) than in face-to-face (F2F) communication. The aim of this paper is to review the empirical evidence in order to gain insight in whether emotions are communicated differently in these different modes of communication. We review two types of studies: (1) studies that explicitly examine discrete emotions and emotion expressions, and (2) studies that examine emotions more implicitly, namely as self-disclosure or emotional styles. Our conclusion is that there is no indication that CMC is a less emotional or less personally involving medium than F2F. On the contrary, emotional communication online and offline is surprisingly similar, and if differences are found they show more frequent and explicit emotion communication in CMC than in F2F.  相似文献   
77.
In this work, we present a constructive method to design a family of virtual contraction based controllers that solve the standard trajectory tracking problem of flexible‐joint robots in the port‐Hamiltonian framework. The proposed design method, called virtual contraction based control, combines the concepts of virtual control systems and contraction analysis. It is shown that under potential energy matching conditions, the closed‐loop virtual system is contractive and exponential convergence to a predefined trajectory is guaranteed. Moreover, the closed‐loop virtual system exhibits properties such as structure preservation, differential passivity, and the existence of (incrementally) passive maps. The method is later applied to a planar RR robot, and two nonlinear tracking control schemes in the developed controllers family are designed using different contraction analysis approaches. Experiments confirm the theoretical results for each controller.  相似文献   
78.
79.
Distributing the workload upon all available Processing Units (PUs) of a high-performance heterogeneous platform (e.g., PCs composed by CPU–GPUs) is a challenging task, since the execution cost of a task on distinct PUs is non-deterministic and affected by parameters not known a priori. This paper presents Sm@rtConfig, a context-aware runtime and tuning system based on a compromise between reducing the execution time of engineering applications and the cost of tasks' scheduling on CPU–GPUs' platforms. Using Model-Driven Engineering and Aspect Oriented Software Development, a high-level specification and implementation for Sm@rtConfig has been created, aiming at improving modularization and reuse in different applications. As case study, the simulation subsystem of a CFD application has been developed using the proposed approach. These system's tasks were designed considering only their functional concerns, whereas scheduling and other non-functional concerns are handled by Sm@rtConfig aspects, improving tasks modularity. Although Sm@rtConfig supports multiple PUs, in this case study, these tasks have been scheduled to execute on an platform composed by one CPU and one GPU. Experimental results show an overall performance gain of 21.77% in comparison to the static assignment of all tasks only to the GPU.  相似文献   
80.
A considerable portion of software systems today are adopted in the embedded control domain. Embedded control software deals with controlling a physical system, and as such models of physical characteristics become part of the embedded control software. In current practices, usually general-purpose languages (GPL), such as C/C++ are used for embedded systems development. Although a GPL is suitable for expressing general-purpose computation, it falls short in expressing the models of physical characteristics as desired. This reduces not only the readability of the code but also hampers reuse due to the lack of dedicated abstractions and composition operators. Moreover, domain-specific static and dynamic checks may not be applied effectively. There exist domain-specific modeling languages (DSML) and tools to specify models of physical characteristics. Although they are commonly used for simulation and documentation of physical systems, they are often not used to implement embedded control software. This is due to the fact that these DSMLs are not suitable to express the general-purpose computation and they cannot be easily composed with other software modules that are implemented in GPL. This paper presents a novel approach to combine a DSML to model physical characteristics and a GPL to implement general-purpose computation. The composition filters model is used to compose models specified in the DSML with modules specified in the GPL at the abstraction level of both languages. As such, this approach combines the benefits of using a DSML to model physical characteristics with the freedom of a GPL to implement general-purpose computation. The approach is illustrated using two industrial case studies from the printing systems domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号