首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6729篇
  免费   264篇
  国内免费   22篇
电工技术   90篇
综合类   9篇
化学工业   1343篇
金属工艺   220篇
机械仪表   192篇
建筑科学   143篇
矿业工程   7篇
能源动力   499篇
轻工业   585篇
水利工程   83篇
石油天然气   91篇
武器工业   2篇
无线电   751篇
一般工业技术   1409篇
冶金工业   787篇
原子能技术   62篇
自动化技术   742篇
  2023年   122篇
  2022年   229篇
  2021年   280篇
  2020年   238篇
  2019年   219篇
  2018年   324篇
  2017年   274篇
  2016年   263篇
  2015年   172篇
  2014年   252篇
  2013年   510篇
  2012年   284篇
  2011年   338篇
  2010年   255篇
  2009年   254篇
  2008年   245篇
  2007年   192篇
  2006年   178篇
  2005年   114篇
  2004年   96篇
  2003年   99篇
  2002年   84篇
  2001年   61篇
  2000年   77篇
  1999年   89篇
  1998年   224篇
  1997年   146篇
  1996年   133篇
  1995年   98篇
  1994年   85篇
  1993年   86篇
  1992年   63篇
  1991年   64篇
  1990年   52篇
  1989年   60篇
  1988年   46篇
  1987年   43篇
  1986年   52篇
  1985年   66篇
  1984年   48篇
  1983年   56篇
  1982年   58篇
  1981年   57篇
  1980年   50篇
  1979年   44篇
  1978年   26篇
  1977年   39篇
  1976年   46篇
  1974年   28篇
  1973年   23篇
排序方式: 共有7015条查询结果,搜索用时 247 毫秒
121.
Iodine-loaded poly(silicic acid) gellan nanocomposite film was fabricated and evaluated for antibacterial properties. Poly(silicic acid) nanoparticles were synthesized by condensation of silicic acid under alkaline conditions in the presence of polyvinyl pyrrolidone, phosphate ions, and molecular iodine. The nanoparticles were incorporated into gellan dispersion to prepare gellan nanocomposite film using the solvent casting method. The nanocomposite films were characterized by Fourier transformed infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction studies. The results of characterization studies indicated improved thermal stability and an increase in the degree of crystallinity. The scanning electron micrographs and energy dispersive X-ray spectrum confirmed the uniform dispersion of silica and iodine in the nanocomposite films. The analysis of physical and mechanical properties revealed the enhanced tensile strength, moisture resistance, and higher folding endurance of poly(silicic acid) gellan nanocomposite films as compared to gellan film. Further, the iodine-loaded poly(silicic acid) gellan nanocomposite films showed good antibacterial activity against Staphylococcus aureus and Escherichia coli and effective mucoadhesive strength. The results indicate that iodine-loaded poly(silicic acid) gellan nanocomposite mucoadhesive film can be used for potential antibacterial applications in pharmaceuticals.  相似文献   
122.
Axial plasma spray is one of the thermal spray techniques to deposit multifunctional advanced coatings. The present work explores the use of this process to deposit thin, continuous, and adherent Ca5 (PO4)3OH (hydroxyapatite, HAp) coatings and characterize its microstructure, phases, hardness and adhesion strength. Three different suspension-deposited HAp coatings were investigated and compared with powder-deposited HAp coating on a Ti6Al4V substrate. The effect of mean solute particle size and solid-loading in the suspension has been explored on the evolution of microstructure, phase content and mechanical properties of axial suspension plasma sprayed (ASPS) coatings. Phase-characterization has shown retention of hydroxyapatite phase and coating crystallinity in the deposited coatings, whereas the adhesion strength of the HAp coating decreased from ~40 MPa to ~13 MPa when bioglass was added to the feedstock material. The lower solid load content and lower mean solute particle size in the suspension were found to be beneficial in achieving porous, rougher, and well-adhering coatings. This work concludes that ASPS can potentially deposit thin HAp coatings (< 50 μm) with high adhesion strength.  相似文献   
123.
This paper reports tribological characterization of titanium based coatings ion bonded on steel balls for automotive applications using exhaust gas recirculation (EGR). It is well known that lubricating oil drawn from EGR operated engine is contaminated with soot and higher amounts of wear debris compared to non-EGR operated engine. In this study, steel balls coated with TiN, TiAlN and TiCN are investigated in both fresh lubricating oil and EGR stressed oil for a comparative assessment of their wear characteristics in two mediums. Normal load was applied on the samples, tested against a rotating cast iron disk, simulating ring-liner interaction. In each experiment, about one quarter of disk was dipped in the oil (a) to ensure the presence of a thin oil film on the disk-ball interface during the experiment, and (b) to avoid exposure of the worn surface to atmospheric air. The results reveal that the wear rates of the coatings based on the change in the scar diameters of the samples, tested in EGR oil was 2-4 times higher than that of fresh lubricating oil. It was found that despite lowest hardness, TiN coated samples showed smaller scar diameters than TiAlN and TiCN coated samples in both lubricating oil environments. A simple geometric model was used to calculate the thickness of the coating removed as a function of the test duration. Results show that TiN coatings last for 120 min in fresh oil as compared to 30 min in the EGR oil under normal loading, whereas TiAlN and TiCN coating last for 60 and 30 min respectively in fresh oil and wear out in 15 min in EGR oil.  相似文献   
124.
Microstructure and properties of flame sprayed tungsten carbide coatings   总被引:3,自引:0,他引:3  
This article reports on feasibility experiments carried out with oxy-acetylene spray system with various oxygen to fuel ratios using two different tungsten carbide powders and powder feeding methods, to evaluate the newly developed fused WC, synthesised by transferred arc thermal plasma method. Transferred arc thermal plasma method is more economical and less energy intensive than the conventional arc method and results in a fused carbide powder with higher hardness. The microstructure and phase composition of powders and coatings were analysed by optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Carbon content of the powders and coatings were determined to study the decarburisation of the material during spraying process. Coatings were also characterised by their hardness and abrasive wear. The effects of metallurgical transformation and phase content are related to wear performance. The results demonstrate that the powders exhibit various degree of phase transformation during the spray process depending on the type of powder, powder feeding and spray parameters. The carbon loss during the spray process in excess of 45% resulted in reduced hardness and wear resistance of the coatings. Coatings with high amount of WC and W2C along with FeW3C showed higher wear resistance. Thus, coatings of high wear resistance can be produced using fused tungsten carbide powder with WC and W2C phases, which can be economically synthesised by thermal plasma transferred arc method.  相似文献   
125.
Quasi sub-subregular solution model with additional ternary parameters, used by Sharma et al. to model the thermodynamic properties of the liquid phases in the ternary Al-Ga-Sb, Al-In-Sb, and GaIn-Sb systems, has been extended to predict the thermodynamic properties of the liquid phase in the quaternary Al-Ga-In-Sb system. The (AlGaln)Sb compound phase in the quaternary Al-Ga-In-Sb system is considered a quasi-regular solution of AlSb, GaSb, and InSb compounds. Phase equilibria in the quaternary Al-Ga-In-Sb system are then calculated and compared with the limited experimental data available in the literature. The ternary Al-Ga-In phase diagram, required for the quaternary calculations, has also been modeled and calculated.  相似文献   
126.
The phase diagram of the CaCl2-CaF2-MgCl2-MgF2 reciprocal ternary system was calculated thermodynamically from available data on the common-ion binary subsystems and from available data on the CaCl2-MgF2 join. This join is very nearly quasibinary and divides the system into two quasiternary systems: the CaCl2-MgF2-CaF2 system with a ternary eutectic calculated at 724 +-5 °C and the CaC2-MgF2-MgCl2 system with a ternary eutectic calculated at 561 +-5 °C.  相似文献   
127.
128.
In this communication, triple band hybrid multi‐input–multi‐output (MIMO) cylindrical dielectric resonator antenna (CDRA) with high isolation is examined. The proposed MIMO antenna includes two symmetric folded microstrip line feeding structures along with CDRA at two different ends of substrate. Two inverted L‐shaped strips on the ground plane are used to enhance the isolation (S12 < ?15 dB) as well as to generates 2.7 GHz frequency band. Metallic strip on the ground plane act as an electromagnetic reflector and also enhance the isolation between two antennas (S12 < ?20 dB). Archetype of proposed MIMO antenna design has been fabricated and tested to validate the simulated results. The proposed antenna operates at three different frequency bands 2.24–2.38 GHz, 2.5–3.26 GHz, and 4.88–7.0 GHz (S11 < ?6 dB) with the fractional bandwidth 6.06%, 26.4%, and 35.7%, respectively. Folded microstrip lines generate path delay between the electric field lines and originate circular polarization characteristics in the frequency range 5.55–5.75 GHz with the fractional bandwidth of 3.55%. In order to satisfy the different performance requirement of MIMO antenna such as envelop correlation coefficient, mean effective gain, effective diversity gain, peak gain are also examined. The proposed antenna is found suitable for LTE2500, WLAN, and WiMAX applications. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2016.  相似文献   
129.
A compact dual‐band CPW–fed metamaterial inspired antenna using Composite Right/Left Handed (CRLH) resonant approach is presented in this article. The antenna is designed such that it can be operated in series resonant mode where resonance behavior is characterized by series LC parameters. Proposed antenna comprises two annular ring resonators connected with the signal patch intended to excite the higher order modes. This results extension of second band from 51.4% (fc = 6.92 GHz) to 69.2% (fc = 7.35 GHz). In addition to that proposed antenna shows compact nature with an electrical size of 0.14 λ0 × 0.21 λ0 × 0.01 λ0 at f0 = 2.18 GHz. The antenna is operating over 2.14–2.23 GHz, 4.81–9.90 GHz with simulated peak gain of 0.66 and 4.44 dB, respectively. Simulated radiation efficiencies of proposed antenna are 69.8 and 94.1% throughout first and second band, respectively. To examine the resonance and radiation characteristics prototype is fabricated and measured. Observed experimental results are in good agreement with those simulated one. These characteristics makes this antenna is a good candidate for modern wireless communication systems such as Bluetooth, WLAN/Wi‐Fi band. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:435–441, 2016.  相似文献   
130.
The aim of this paper is to design a current source obtained as a representation of p information symbols \(\{I_k\}\) so that the electromagnetic (EM) field generated interacts with a quantum atomic system producing after a fixed duration T a unitary gate U(T) that is as close as possible to a given unitary gate \(U_g\). The design procedure involves calculating the EM field produced by \(\{I_k\}\) and hence the perturbing Hamiltonian produced by \(\{I_k\}\) finally resulting in the evolution operator produced by \(\{I_k\}\) up to cubic order based on the Dyson series expansion. The gate error energy is thus obtained as a cubic polynomial in \(\{I_k\}\) which is minimized using gravitational search algorithm. The signal to noise ratio (SNR) in the designed gate is higher as compared to that using quadratic Dyson series expansion. The SNR is calculated as the ratio of the Frobenius norm square of the desired gate to that of the desired gate error.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号