首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   743篇
  免费   57篇
  国内免费   9篇
电工技术   17篇
综合类   3篇
化学工业   207篇
金属工艺   22篇
机械仪表   24篇
建筑科学   36篇
矿业工程   1篇
能源动力   55篇
轻工业   48篇
水利工程   6篇
石油天然气   4篇
无线电   65篇
一般工业技术   141篇
冶金工业   24篇
原子能技术   10篇
自动化技术   146篇
  2024年   4篇
  2023年   13篇
  2022年   27篇
  2021年   56篇
  2020年   61篇
  2019年   42篇
  2018年   86篇
  2017年   47篇
  2016年   45篇
  2015年   28篇
  2014年   56篇
  2013年   97篇
  2012年   58篇
  2011年   61篇
  2010年   41篇
  2009年   32篇
  2008年   9篇
  2007年   13篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  1999年   2篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有809条查询结果,搜索用时 15 毫秒
91.
A wide variety of environmental factors including physical and biochemical signals are responsible for stem cell behavior and function. In particular, matrix elasticity and cell shape have been shown to determine stem cell function, yet little is known about the interplay between how these physical cues control cell differentiation. For the first time, by using ultraviolet (UV) lithography to pattern poly(ethylene) glycol (PEG) hydrogels, it is possible to manufacture microenvironments capable of parsing the effects of matrix elasticity, cell shape, and cell size in order to explore the relationship between matrix elasticity and cell shape in mesenchymal stem cell (MSC) lineage commitment. These data show that cells cultured on 1000 μm2 circles, squares, and rectangles are primarily adipogenic lineage regardless of matrix elasticity, while cells cultured on 2500 and 5000 μm2 shapes more heavily depend on shape and elasticity for lineage specification. It is further characterized how modifying the cell cytoskeleton through pharmacological inhibitors can modify cell behavior. By showing MSC lineage commitment relationships due to physical signals, this study highlights the importance of cell shape and matrix elasticity in further understanding stem cell behavior for future tissue engineering strategies.  相似文献   
92.
On line automated visual inspection for quality and process control is becoming a very important requirement in an automated manufacturing environment. This paper examines the possibility of real-time inspection of standard part using machine vision.  相似文献   
93.
Compression garments mainly produced from elastic knitted fabrics have attracted many attentions due to their medical care performances. Components’ characteristics of the pressure garments such as yarn and fabric structure affect significantly the pressure applied on the human body. In this paper, it is aimed to simulate the effect of yarn’s mechanical properties as well as fabric structure on mechanical performance of the compression garment. For this purpose, a precise geometrical model for fabric structure is needed by which the pressure applied to the body could be predicted. Accordingly, double jersey knitted fabrics containing elastane weft yarns were produced on an electronic flat knitting machine and the fabric tensile properties were measured in course direction. Using equations governing the fabric structural unit-cell, a real geometric model was created in a finite element software environment. Considering the linear visco-elastic properties for elastane weft yarn, stress-strain curve was extracted. The results obtained from numerical simulation were compared with the experimental data in order to validate the proposed geometrical model. The findings demonstrate a good agreement between experimental and simulation results.  相似文献   
94.
Protection of Metals and Physical Chemistry of Surfaces - The effect of annealing temperature on the properties of silver thin films has been investigated. Ag thin films have been deposited on...  相似文献   
95.
Phytic acid–modified layered double hydroxide (Ph‐LDH) was synthesized via coprecipitation method and subsequently was used in polypropylene (PP) by combining with an ammonium polyphosphate (APP) via melt compounding method. The synergistic effect between APP and Ph‐LDH on the thermal stability, flammability, and mechanical properties of the resultant PP composites was investigated by thermogravimetric analysis, limiting oxygen index, vertical burning test (UL‐94), cone calorimeter tests, tensile test, and impact test. Morphologies of the chars obtained from the samples after the cone calorimeter tests were studied by scanning electron microscopy. The combination of APP and Ph‐LDH slightly influenced the impact and tensile properties of PP. Also, the synergistic effect between APP and Ph‐LDH occurred in the cone calorimeter test. Moreover, the combination of APP and Ph‐LDH produced better quality char that effectively suppressed the spread of the flame and volatile and finally extinguished the fire.  相似文献   
96.
This work aims to improve the rheological properties and stability of multiwalled carbon nanotubes (MWCNTs)/acrylamide (AA) base skeleton polymer blends at harsh environment of high salinity-high temperature (HS-HT) or various pH. Different co/terpolymers have been accomplished to modify the structure of AA polymer by free-radical copolymerization of AA-based monomers. Anionic, cationic, and hydrophobic functional groups were used for the synthesis of polyelectrolyte, polyampholytic, and partially hydrophobic AA polymer types. The conversion, molecular weight, and poly dispersity of co/terpolymers have been evaluated by nuclear magnetic resonance (1H-NMR), gel permeation chromatography, and differential scanning calorimetry analysis. The effects of sonication power, concentration of polymer, and concentration of MWCNTs were also investigated on rheological behavior of co/terpolymers. The results show that negative polyelectrolyte and polyampholytic polymers are the best candidates for the improvement of MWCNTs/polymer stability and viscosity at HS-HT and alkali environment, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47205.  相似文献   
97.
A combination of reduced graphene oxide (rGO) nanosheets grafted with regioregular poly(3‐hexylthiophene) (P3HT) (rGO‐g‐P3HT) and P3HT‐b‐polystyrene (PS) block copolymers was utilized to modify the morphology of P3HT:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) active layers in photovoltaic devices. Efficiencies greater than 6% were acquired after a mild thermal annealing. To this end, the assembling of P3HT homopolymers and P3HT‐b‐PS block copolymers onto rGO‐g‐P3HT nanosheets was investigated, showing that the copolymers were assembled from the P3HT side onto the rGO‐g‐P3HT nanosheets. Assembling of P3HT‐b‐PS block copolymers onto the rGO‐g‐P3HT nanosheets developed the net hole and electron highways for charge transport, thereby in addition to photoluminescence quenching the charge mobility (μh and μe) values increased considerably. The best charge mobilities were acquired for the P3HT50000:PC71BM:rGO‐g‐P3HT50000:P3HT7000b‐PS1000 system (μh = 1.9 × 10?5 cm2 V–1 s–1 and μe = 0.8 × 10?4 cm2 V–1 s–1). Thermal annealing conducted at 120 °C also further increased the hole and electron mobilities to 9.8 × 10?4 and 2.7 × 10?3 cm2 V–1 s–1, respectively. The thermal annealing acted as a driving force for better assembly of the P3HT‐b‐PS copolymers onto the rGO‐g‐P3HT nanosheets. This phenomenon improved the short circuit current density, fill factor, open circuit voltage and power conversion efficiency parameters from 11.13 mA cm?2, 0.63 V, 62% and 4.35% to 12.98 mA cm?2, 0.69 V, 68% and 6.09%, respectively. © 2019 Society of Chemical Industry  相似文献   
98.
The void formation and plastic deformation micromechanisms of a cold-rolled DP600 steel during tensile loading were studied by scanning electron microscopy(SEM) and electron backscatter diffraction(EBSD).The SEM observations revealed that the main void nucleation mechanism in the DP600 steel is decohesion at the ferrite-martensite interfaces.The voids were mostly observed between the closely spaced martensite islands situated at the boundaries of relatively finer ferrite grains.The EBSD results indicated a strain gradient developed from the ferrite-martensite and ferrite-ferrite interfaces into the interior of ferrite grains during the tensile deformation,which led to a stress concentration at these interfaces.Moreover,it was demonstrated that local misorientation inside the finer ferrite grains surrounded by martensite islands was higher than that for the coarser ferrite grains,which made the former more prone to void initiation.  相似文献   
99.
Fluid flow manifold plays a significant role in the performance of a fuel cell stack because it affects the pressure drop, reactants distribution uniformity and flow losses, significantly. In this study, the flow distribution and the pressure drop in the gas channels including the inlet and outlet manifolds, with U- and Z-type arrangements, of a 10-cell PEM fuel cell stack are analyzed at anode and cathode sides and the effects of inlet reactant stoichiometry and manifold hydraulic diameter on the pressure drop are investigated. Furthermore, the effect of relative humidity of oxidants on the pressure drop of cathode are investigated. The results indicate that increase of the manifold hydraulic diameter leads to decrease of the pressure drop and a more uniform flow distribution at the cathode side when air is used as oxidant while utilization of humidified oxidant results in increase of pressure drop. It is demonstrated that for the inlet stoichiometry of 2 and U type manifold arrangement when the relative humidity increases from 25% to 75%, the pressure drop increases by 60.12% and 116.14% for oxygen and air, respectively. It is concluded that there is not a significant difference in pressure drop of U- and Z-type arrangements when oxygen is used as oxidant. When air is used as oxidant, the effect of manifold type arrangement is more significant than other cases, and increase of the stoichiometry ratio from 1.25 to 2.5 leads to increase of pressure drop by 527.3%.  相似文献   
100.
In this study, the mechanical properties of composite bituminous structures with geogrid products, used as an interlayer between different types of bituminous mixtures, at a constant temperature, were examined. A twofold experimental program based on new approaches was selected. A new configuration of the 3-Point Bending Test (3-PBT) was adopted to capture the J-integral and crack resistance property defined by crack resistance index (CRI) at the interface against bottom-up crack propagation. The bonding quality at the interface was also defined through a new index named coefficient of interface bonding (CIB), which was measured via a modified version of the slant shear device. The results derived from this research revealed that reinforcement of the interface, with varying degree of surface texture, by geogrid products significantly enhances the fracture toughness of the whole system in terms of the J-integral, which could be properly connected to the combined functions of bonding quality and crack resistance indices defined at the interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号