The heavy reliance on data is one of the major reasons that currently limit the development of deep learning. Data quality directly dominates the effect of deep learning models, and the long-tailed distribution is one of the factors affecting data quality. The long-tailed phenomenon is prevalent due to the prevalence of power law in nature. In this case, the performance of deep learning models is often dominated by the head classes while the learning of the tail classes is severely underdeveloped. In order to learn adequately for all classes, many researchers have studied and preliminarily addressed the long-tailed problem. In this survey, we focus on the problems caused by long-tailed data distribution, sort out the representative long-tailed visual recognition datasets and summarize some mainstream long-tailed studies. Specifically, we summarize these studies into ten categories from the perspective of representation learning, and outline the highlights and limitations of each category. Besides, we have studied four quantitative metrics for evaluating the imbalance, and suggest using the Gini coefficient to evaluate the long-tailedness of a dataset. Based on the Gini coefficient, we quantitatively study 20 widely-used and large-scale visual datasets proposed in the last decade, and find that the long-tailed phenomenon is widespread and has not been fully studied. Finally, we provide several future directions for the development of long-tailed learning to provide more ideas for readers.
Nano Research - Aggregation-induced emission luminogens (AIEgens) are fluorescent agents that are ideal for bioimaging and have been widely used for organelle targeting, cellular mapping, and... 相似文献
This study presents a novel weight-based multiobjective artificial immune system (WBMOAIS) based on opt-aiNET, the artificial immune system algorithm for multi-modal optimization. The proposed algorithm follows the elementary structure of opt-aiNET, but has the following distinct characteristics: (1) a randomly weighted sum of multiple objectives is used as a fitness function. The fitness assignment has a much lower computational complexity than that based on Pareto ranking, (2) the individuals of the population are chosen from the memory, which is a set of elite solutions, and a local search procedure is utilized to facilitate the exploitation of the search space, and (3) in addition to the clonal suppression algorithm similar to that used in opt-aiNET, a new truncation algorithm with similar individuals (TASI) is presented in order to eliminate similar individuals in memory and obtain a well-distributed spread of non-dominated solutions. The proposed algorithm, WBMOAIS, is compared with the vector immune algorithm (VIS) and the elitist non-dominated sorting genetic system (NSGA-II) that are representative of the state-of-the-art in multiobjective optimization metaheuristics. Simulation results on seven standard problems (ZDT6, SCH2, DEB, KUR, POL, FON, and VNT) show WBMOAIS outperforms VIS and NSGA-II and can become a valid alternative to standard algorithms for solving multiobjective optimization problems. 相似文献
Distance-between-vehicle-measurement is the only factor in traditional car rear-end alarm system. To address the above problem, this paper proposes an alarming model based on multi-agent systems (MAS) and driving behavior. It consists of four different types of agents that can either work alone or collaborate through a communications protocol on the basis of the extended KQML. The rear-end alarming algorithm applies the Bayes decision theory to calculate the probability of collision and prevent its occurrence real-time. The learning algorithm of driving behavior based on ensemble artificial neural network (ANN) and the decision procedure based on Bayes’ theory are also described in this paper. Both autonomy and reliability are enhanced in the proposed system. The effectiveness and robustness of the model have been confirmed by the simulated experiments. 相似文献