首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   10篇
  国内免费   1篇
电工技术   1篇
化学工业   45篇
金属工艺   13篇
机械仪表   3篇
建筑科学   1篇
能源动力   11篇
轻工业   12篇
水利工程   3篇
石油天然气   1篇
无线电   25篇
一般工业技术   61篇
冶金工业   41篇
原子能技术   9篇
自动化技术   15篇
  2023年   1篇
  2022年   6篇
  2021年   5篇
  2020年   9篇
  2019年   4篇
  2018年   8篇
  2017年   4篇
  2016年   13篇
  2015年   14篇
  2014年   9篇
  2013年   16篇
  2012年   15篇
  2011年   18篇
  2010年   14篇
  2009年   15篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有241条查询结果,搜索用时 31 毫秒
81.
The effect of nonideal conditions on the current flow in a MHD generator has been investigated by two-dimensional analysis in terms of internal resistance, Hall voltage and uniformity of current distribution. In particular, the effects of (a) temperature profile along the Faraday direction in the plasma, (b) current bunching on cathode surfaces due to phenomena like arc spots, and (c) electrical leakage between adjacent electrodes due to finite resistance of the insulator segments are investigated. the results show that cold boundary layers near metallic electrode surfaces tend to relieve current concentration. the optimum resistivity of wedge-shaped electrodes for obtaining uniform current distribution in the duct has been calculated for various temperature profiles. the results indicate that the internal resistance of a MHD generator strongly depends on the location and size of current bunched spots on cathodes. the fluctuations in the spot size and its location can lead to large fluctuations in power output. the present calculations reveal that the electrical performance of a MHD generator is not adversely affected by current leakage along insulator segments for small insulator conductivities.  相似文献   
82.
CdSexTe1−x thin films of different compositions have been deposited on cleaned glass substrates using the hot wall deposition technique under conditions very close to thermodynamical equilibrium with minimum loss of material. The electrical conductivity of the deposited films has been studied as a function of temperature. All the films showed a transition from phonon-assisted hopping conduction through the impurity band to grain-boundary-limited conduction in the conduction/valence band at temperature around 325 K. The conductivity has been found to vary with composition; it varied from 0.0027 to 0.0198 Ω−1 cm−1 when x changed from 0 to 1. The activation energies of the films of different compositions determined at 225 and 400 K have been observed to lie in the range 0.0031–0.0098 and 0.0285–0.0750 eV, respectively. The Hall-effect studies carried out on the deposited films revealed that the nature of conductivity (p or n-type) was dependent on film composition; films with composition x=0 and 0.15 have been found to be p-type and the ones with composition x=0.4, 0.6, 0.7, 0.85 and 1 have been observed to exhibit n-type conductivity. The carrier concentration has been determined and is of the order of 1017 cm−3. The majority of carrier mobilities of the films have been observed to vary from 0.032 to 0.183 cm2 V−1 s−1 depending on film composition. The study of the mobility of the charge carriers with temperature in the range of 300–450 K showed that the mobility increased with power of temperature indicating that the type of scattering mechanism in the studied temperature range is the ionized impurity scattering mechanism.  相似文献   
83.
Nitric oxide is a free radical involved in the pathogenesis of cancer by increasing tumour vascularization and metastasis. Studies using nitric oxide inhibitors have shown decrease in tumour growth and a role in cancer therapy. To analyse the effect of fruits on nitric oxide, we carried out experiments using a nitric oxide donor on the breast cancer cell line, MCF-7. Proliferating MCF-7 cells were treated with the methanolic extract of the fruits. The inhibitory activity of fruit extracts on cell proliferation was measured using the MTT assay. Chiku and dragon fruit showed high inhibitory activity when compared to the other fruits tested. The total polyphenol and flavonoid content and nitric oxide scavenging activity were found to be high in pomegranate, chiku, litchi, durian, grape and apple. This study shows that phytochemicals present in fruits scavenge nitric oxide and inhibit MCF-7 cell proliferation.  相似文献   
84.
Chitin (CT), the well-known natural biopolymer and chitosan (CS) (bio-based or “artificial polymer”) are non-toxic, biodegradable and biocompatible in nature. The advantages of these biomaterials are such that, they can be easily processed into different forms such as membranes, sponges, gels, scaffolds, microparticles, nanoparticles and nanofibers for a variety of biomedical applications such as drug delivery, gene therapy, tissue engineering and wound healing. Present review focuses on the diverse applications of CT and CS membranes and scaffolds for drug delivery, tissue engineering and targeted regenerative medicine. The chitinous scaffolds of marine sponges’ origin are discussed here for the first time. These CT based scaffolds obtained from Porifera possess remarkable and unique properties such as hydration, interconnected channels and diverse structural architecture. This review will provide a brief overview of CT and CS membranes and scaffolds toward different kinds of delivery applications such as anticancer drug delivery, osteogenic drug delivery, and growth factor delivery, because of their inimitable release behavior, degradation profile, mucoadhesive nature, etc. The review also provides an overview of the key features of CT and CS membranes and scaffolds such as their biodegradability, cytocompatibility and mechanical properties toward applications in tissue engineering and wound healing.  相似文献   
85.
Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.  相似文献   
86.
In this work, we developed biodegradable chitin nanogels (CNGs) by controlled regeneration method. For multifunctionalization, we have conjugated CNGs with MPA-capped-CdTe-QDs (QD-CNGs) for the in vitro cellular localization studies. In addition, the Bovine Serum Albumin (BSA) was loaded on to QD-CNGs (BSA-QD-CNGs). The CNGs, QD-CNGs, and BSA-QD-CNGs were well-characterized by SEM and AFM, which shows that the nanogels are in the range of <100 nm. These were further characterized by FT-IR and Cyclic Voltametry. The cytocompatibility assay showed that the nanogels are nontoxic to L929, NIH-3T3, KB, MCF-7, PC3, and VERO cells. The cell uptake studies of the QD-CNGs were analyzed, which showed retention of these nanogels inside the cells (L929, PC3, and VERO). In addition, the protein loading efficiency of the nano gels has also been analyzed. Our preliminary studies reveal that these multifunctionalized nanogels could be useful for drug delivery with simultaneous imaging and biosensing.  相似文献   
87.
A simple close-spaced vapour transport (CSVT) system has been designed and fabricated. Copper indium diselenide (CuInSe2) thin films of wide range of thickness (4000–60000 Å) have been prepared using the fabricated CSVT system at source temperatures 713, 758 and 843 K. A detailed study on the deposition temperature has been made and the temperature profile along with the reaction kinetics is reported. The composition of the chemical constituents of the films has been determined by energy dispersive X-ray analysis. The structural characterization of the as-deposited CuInSe2 films of various thicknesses has been carried out by X-ray diffraction method. The diffractogram revealed that the CuInSe2 films are polycrystalline in nature with chalcopyrite structure. The structural parameters such as lattice constants, axial ratio, tetragonal distortion, crystallite size, dislocation density and strain have been evaluated and the results are discussed. The surface morphology of the as-deposited CuInSe2 thin films has been studied using scanning electron microscope. The transmittance characteristics of the CuInSe2 films have been studied using double beam spectrophotometer in the wavelength range 4000–15000 Å and the optical constants n and k are evaluated. The absorption coefficient has been found to be very high and is of the order of 105–106 m−1. CuInSe2 films are found to have a direct allowed transition and the optical band gap is found to be in the range 0.85–1.05 eV.  相似文献   
88.
89.
90.
Piezo-laminated thin beams have been analyzed with induced strain actuation using Kirchhoff’s hypothesis and von Kármán strain displacement relations. Extremizing the Lagrangian of the system derives the governing nonlinear partial differential equations for the beam. Eliminating the in-plane displacement, an integro-partial differential equation of motion is obtained in terms of the transverse displacement. A deflection function that satisfies the simply supported boundary conditions is assumed to get the system equation as a nonlinear second order ordinary differential equation in time, which is of Duffing’s type. The solution of the problem is obtained through exact integration. Results are presented for frequency and amplitude for surface bonded PZT-5A layer in composite beams with various stacking sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号